Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587386

RESUMO

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Pleiotropia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/metabolismo , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Genes Recessivos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome , Via de Sinalização Wnt
2.
Clin Genet ; 105(2): 196-201, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850357

RESUMO

Syndromic constitutive thrombocytopenia encompasses a heterogeneous group of disorders characterised by quantitative and qualitative defects of platelets while featuring other malformations. Recently, heterozygous, de novo variants in RAP1B were reported in three cases of syndromic thrombocytopenia. Here, we report two additional, unrelated individuals identified retrospectively in our data repository with heterozygous variants in RAP1B: NM_001010942.2(RAP1B):c.35G>A, p.(Gly12Glu) (de novo) and NM_001010942.2(RAP1B):c.178G>A, p.(Gly60Arg). Both individuals had thrombocytopenia, as well as congenital malformations, and neurological, behavioural, and dysmorphic features, in line with previous reports. Our data supports the causal role of monoallelic RAP1B variants that disrupt RAP1B GTPase activity in syndromic congenital thrombocytopenia.


Assuntos
Plaquetas , Trombocitopenia , Humanos , Estudos Retrospectivos , Plaquetas/metabolismo , Trombocitopenia/genética , Proteínas rap de Ligação ao GTP
3.
Clin Genet ; 105(5): 510-522, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38221827

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.


Assuntos
Epilepsia Generalizada , Epilepsia , Criança , Humanos , Egito/epidemiologia , Estudos Retrospectivos , Epilepsia/diagnóstico , Convulsões/genética , Convulsões/complicações , Fenótipo
4.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538041

RESUMO

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Assuntos
Actinas , Peixe-Zebra , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Endossomos/genética , Endossomos/metabolismo , Células HEK293 , Lectinas Tipo C/genética , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Hum Genet ; 142(7): 949-964, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37198333

RESUMO

The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Cisteína/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Microcefalia/genética , Fenótipo , Zinco , Deficiência Intelectual/genética , Componente 6 do Complexo de Manutenção de Minicromossomo/genética
6.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119330

RESUMO

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genética
7.
Clin Genet ; 102(5): 444-450, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908151

RESUMO

HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.


Assuntos
Códon sem Sentido , Deficiência Intelectual , Prolil Hidroxilases/metabolismo , Aminoácidos , Domínio Catalítico , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Fenótipo , Síndrome
8.
Clin Genet ; 101(2): 247-254, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708404

RESUMO

Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.


Assuntos
Alelos , Antígenos de Neoplasias/genética , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Mutação , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Análise Mutacional de DNA , Bases de Dados Genéticas , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Linhagem , Fenótipo
9.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236446

RESUMO

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Assuntos
Distúrbios Distônicos/genética , Fibroblastos/metabolismo , eIF-2 Quinase/genética , Adolescente , Adulto , Idade de Início , Povo Asiático , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , População Branca , Sequenciamento do Exoma , Adulto Jovem , eIF-2 Quinase/metabolismo
10.
J Am Soc Nephrol ; 32(1): 223-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020172

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are one of the most common malformations identified in the fetal stage. Bilateral renal agenesis (BRA) represents the most severe and fatal form of CAKUT. Only three genes have been confirmed to have a causal role in humans (ITGA8, GREB1L, and FGF20). METHODS: Genome sequencing within a diagnostic setting and combined data repository analysis identified a novel gene. RESULTS: Two patients presented with BRA, detected during the prenatal period, without additional recognizable malformations. They had parental consanguinity and similarly affected, deceased siblings, suggesting autosomal recessive inheritance. Evaluation of homozygous regions in patient 1 identified a novel, nonsense variant in GFRA1 (NM_001348097.1:c.676C>T, p.[Arg226*]). We identified 184 patients in our repository with renal agenesis and analyzed their exome/genome data. Of these 184 samples, 36 were from patients who presented with isolated renal agenesis. Two of them had loss-of-function variants in GFRA1. The second patient was homozygous for a frameshift variant (NM_001348097.1:c.1294delA, p.[Thr432Profs*13]). The GFRA1 gene encodes a receptor on the Wolffian duct that regulates ureteric bud outgrowth in the development of a functional renal system, and has a putative role in the pathogenesis of Hirschsprung disease. CONCLUSIONS: These findings strongly support the causal role of GFRA1-inactivating variants for an autosomal recessive, nonsyndromic form of BRA. This knowledge will enable early genetic diagnosis and better genetic counseling for families with BRA.


Assuntos
Alelos , Anormalidades Congênitas/genética , Genes Recessivos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Nefropatias/congênito , Rim/anormalidades , Exoma , Feminino , Aconselhamento Genético , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Homozigoto , Humanos , Rim/patologia , Nefropatias/genética , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Sistema Urinário/patologia
11.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875846

RESUMO

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Assuntos
Exoma , Deficiência Intelectual , Sequência de Bases , Exoma/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso , Fenótipo , Sequenciamento do Exoma
12.
Clin Genet ; 99(2): 303-308, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131077

RESUMO

We describe an X-linked syndrome in 13 male patients from a single family with three generations affected. Patients presented prenatally or during the neonatal period with intrauterine growth retardation, ventriculomegaly, hydrocephalus, hypotonia, congenital heart defects, hypospadias, and severe neurodevelopmental delay. The disease is typically fatal during infancy, mainly due to sepsis (pneumonias). Female carriers are asymptomatic. We performed genome sequencing in four individuals and identified a unique candidate variant in the OTUD5 gene (NM_017602.3:c.598G > A, p.Glu200Lys). The variant cosegregated with the disease in 10 tested individuals. OTUD5 was considered as a candidate gene based on two previous missense variants detected in patients with intellectual disability. In conclusion, we define a syndrome associated with OTUD5 defects and add compelling evidence of genotype-phenotype association. This finding ended the long diagnostic odyssey of this family.


Assuntos
Anormalidades Múltiplas/genética , Endopeptidases/genética , Genes Ligados ao Cromossomo X , Hidrocefalia/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Saúde da Família , Genes Letais , Estudos de Associação Genética , Humanos , Recém-Nascido , Masculino , Linhagem , Síndrome , Sequenciamento Completo do Genoma
13.
Clin Genet ; 99(4): 513-518, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33354762

RESUMO

Congenital myopathies include a wide range of genetically determined disorders characterized by muscle weakness that usually manifest shortly after birth. To date, two different homozygous loss-of-function variants in the HACD1 gene have been reported to cause congenital myopathy. We identified three patients manifesting with neonatal-onset generalized muscle weakness and motor delay that carried three novel homozygous likely pathogenic HACD1 variants. The two of these changes (c.373_375+2delGAGGT and c.785-1G>T) were predicted to introduce splice site alterations, while one is a nonsense change (c.458G>A). The clinical presentation of our and the previously reported patients was comparable, including the temporally progressive improvement that seems to be characteristic of HACD1-related myopathy. Our findings conclusively confirm the implication of HACD1 in the pathogenesis of congenital myopathies, corroborate the main phenotypic features, and further define the genotypic spectrum of this genetic form of myopathy. Importantly, the genetic diagnosis of HACD1-related myopathy bears impactful prognostic value.


Assuntos
Mutação com Perda de Função , Doenças Musculares/congênito , Proteínas Tirosina Fosfatases/genética , Adolescente , Idade de Início , Alelos , Causalidade , Criança , Códon sem Sentido , Consanguinidade , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Recém-Nascido , Masculino , Doenças Musculares/genética , Prognóstico , Proteínas Tirosina Fosfatases/deficiência , Proteínas Tirosina Fosfatases/fisiologia , Processamento Pós-Transcricional do RNA , Sítios de Splice de RNA
14.
Am J Med Genet A ; 185(2): 384-389, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166031

RESUMO

Schuurs-Hoeijmakers syndrome (SHS) is a rare syndrome involving a de novo variant in the PACS1 gene on chromosome 11q13. There are 36 individuals published in the literature so far, mostly diagnosed postnatally (34/36) after recognizing the typical facial features co-occurring with developmental delay, intellectual disability, and multiple malformations. Herein, we present one prenatal and 15 postnatal cases with the recurrent heterozygous pathogenic variant NM_018026.3:c.607C>T p.(Arg203Trp) in the PACS1 gene detected by exome sequencing. These 16 cases were identified by mining Centogene and the Hong Kong clinical genetic service databases. Collectively, the 49 postnatally diagnosed individuals present with typical facial features and developmental delay, while the three prenatally diagnosed individuals present with multiple congenital anomalies. In the current study, the use of exome sequencing as an unbiased diagnostic tool aided the diagnosis of SHS (pre- and postnatally). The identification of additional cases with SHS add to the current understanding of the clinical phenotype associated with pathogenic PACS1 variants. Databases combining clinical and genetic information are helpful for the study of rare diseases.


Assuntos
Anormalidades Múltiplas/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Fenótipo , Diagnóstico Pré-Natal/métodos , Sequenciamento do Exoma
15.
Clin Genet ; 98(1): 56-63, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32323311

RESUMO

Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare.


Assuntos
Proteínas ADAMTS/genética , Variação Genética/genética , Cardiopatias Congênitas/genética , Doenças das Valvas Cardíacas/genética , Aorta/anormalidades , Criança , Pré-Escolar , Feminino , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Valvas Cardíacas/anormalidades , Ventrículos do Coração/anormalidades , Humanos , Masculino , Fenótipo
16.
Genet Med ; 21(1): 53-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30100613

RESUMO

PURPOSE: Next-generation sequencing (NGS) is rapidly replacing Sanger sequencing in genetic diagnostics. Sensitivity and specificity of NGS approaches are not well-defined, but can be estimated from applying NGS and Sanger sequencing in parallel. Utilizing this strategy, we aimed at optimizing exome sequencing (ES)-based diagnostics of a clinically diverse patient population. METHODS: Consecutive DNA samples from unrelated patients with suspected genetic disease were exome-sequenced; comparatively nonstringent criteria were applied in variant calling. One thousand forty-eight variants in genes compatible with the clinical diagnosis were followed up by Sanger sequencing. Based on a set of variant-specific features, predictors for true positives and true negatives were developed. RESULTS: Sanger sequencing confirmed 81.9% of ES-derived variants. Calls from the lower end of stringency accounted for the majority of the false positives, but also contained ~5% of the true positives. A predictor incorporating three variant-specific features classified 91.7% of variants with 100% specificity and 99.75% sensitivity. Confirmation status of the remaining variants (8.3%) was not predictable. CONCLUSIONS: Criteria for variant calling in ES-based diagnostics impact on specificity and sensitivity. Confirmatory sequencing for a proportion of variants, therefore, remains a necessity. Our study exemplifies how these variants can be defined on an empirical basis.


Assuntos
Sequenciamento do Exoma , Exoma/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
17.
Hum Genet ; 137(9): 753-768, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167850

RESUMO

NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.


Assuntos
Proteínas de Transporte/genética , Canalopatias/genética , Deficiências do Desenvolvimento/genética , Marcadores Genéticos , Variação Genética , Proteínas de Membrana/genética , Canais de Sódio/genética , Adolescente , Adulto , Canalopatias/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Canais Iônicos , Masculino , Fenótipo , Adulto Jovem
20.
J Hum Genet ; 61(3): 229-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607181

RESUMO

In 2012 Alazami et al. described a novel syndromic cause of primordial dwarfism with distinct facial features and severe intellectual disability. A homozygous frameshift mutation in LARP7, a chaperone of the noncoding RNA 7SK, was discovered in patients from a single consanguineous Saudi family. To date, only one additional patient has recently been described. To further delineate the phenotype associated with LARP7 mutations, we report two additional cases originating from the Netherlands and Saudi Arabia. The patients presented with intellectual disability, distinct facial features and variable short stature. We describe their clinical features and compare them with the previously reported patients. Both cases were identified by diagnostic whole-exome sequencing, which detected two homozygous pathogenic LARP7 variants: c.1091_1094delCGGT in the Dutch case and c.1045_1051dupAAGGATA in the Saudi Arabian case. Both variants are leading to frameshifts with introduction of premature stop codons, suggesting that loss of function is likely the disease mechanism. This study is an independent confirmation of the syndrome due to LARP7 depletion. Our cases broaden the associated clinical features of the syndrome and contribute to the delineation of the phenotypic spectrum of LARP7 mutations.


Assuntos
Fácies , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Ribonucleoproteínas/genética , Criança , Pré-Escolar , Humanos , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA