Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(5): 1162-1173, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31889008

RESUMO

Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut-brain interaction and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key bioactive microbial metabolites, are the missing link along the gut-brain axis and might be able to modulate recovery after experimental stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.SIGNIFICANCE STATEMENT Previous studies have shown a bidirectional communication along the gut-brain axis after stroke. Stroke alters the gut microbiota composition, and in turn, microbiota dysbiosis has a substantial impact on stroke outcome by modulating the immune response. However, until now, the mediators derived from the gut microbiome affecting the gut-immune-brain axis and the molecular mechanisms involved in this process were unknown. Here, we demonstrate that short-chain fatty acids, fermentation products of the gut microbiome, are potent and proregenerative modulators of poststroke neuronal plasticity at various structural levels. We identified that this effect was mediated via circulating lymphocytes on microglial activation. These results identify short-chain fatty acids as a missing link along the gut-brain axis and as a potential therapeutic to improve recovery after stroke.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Ácidos Graxos Voláteis/administração & dosagem , Acidente Vascular Cerebral/imunologia , Animais , Encéfalo/metabolismo , Feminino , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Transcriptoma/efeitos dos fármacos
2.
Methods Mol Biol ; 2616: 327-343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715943

RESUMO

Skilled forelimb reaching and grasping are important components of rodent motor performance. The isometric pull task can serve as a tool for quantifying forelimb function following stroke or other CNS injury as well as in forelimb rehabilitation. This task has been extensively developed for use in rats. Here, we describe methods of setup and training of an operant reach chamber for mice. Using a reward of peanut oil, mice are adaptively trained to pull a handle positioned slightly outside of an operant chamber, with automated recording of the number of attempts, force generated, success rate, and latency to maximal force.


Assuntos
Acidente Vascular Cerebral , Camundongos , Ratos , Animais , Membro Anterior , Força da Mão
3.
Neurorehabil Neural Repair ; 34(6): 475-478, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32431214

RESUMO

Background and Objective. Rodent models of stroke impairment should capture translatable features of behavioral injury. This study characterized poststroke impairment of motor precision separately from strength in an automated behavioral assay. Methods. We measured skilled distal forelimb reach-and-grasp motions within a target force range requiring moderate-strength. We assessed whether deficits reflected an increase in errors on only one or both sides of the target force range after photothrombotic cortical stroke. Results. Pull accuracy was impaired for 6 weeks after stroke, with errors redistributing to both sides of the target range. No decrease in maximum force was measured. Conclusions. This automated reach task measures sustained loss of motor precision following cortical stroke in mice.


Assuntos
Comportamento Animal/fisiologia , Membro Anterior/fisiopatologia , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/patologia , Acidente Vascular Cerebral/patologia
4.
Front Neurosci ; 13: 1055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636534

RESUMO

Whole-brain volumetric microscopy techniques such as serial two-photon tomography (STPT) can provide detailed information on the roles of neuroinflammation and neuroplasticity throughout the whole brain post-stroke. STPT automatically generates high-resolution images of coronal sections of the entire mouse brain that can be readily visualized in three dimensions. We developed a pipeline for whole brain image analysis that includes supervised machine learning (pixel-wise random forest models via the "ilastik" software package) followed by registration to a standardized 3-D atlas of the adult mouse brain (Common Coordinate Framework v3.0; Allen Institute for Brain Science). These procedures allow the detection of cellular fluorescent signals throughout the brain in an unbiased manner. To illustrate our imaging techniques and automated image quantification, we examined long-term post-stroke motor circuit connectivity in mice that received a motor cortex photothrombotic stroke. Two weeks post-stroke, mice received intramuscular injections of pseudorabies virus (PRV-152), a trans-synaptic retrograde herpes virus driving expression of green fluorescent protein (GFP), into the affected contralesional forelimb to label neurons in descending tracts to the forelimb musculature. Mice were sacrificed 3 weeks post-stroke. We also quantified sub-acute neuroinflammation in the post-stroke brain in a separate cohort of mice following a 60 min transient middle cerebral artery occlusion (tMCAo). Naive e450+-labeled splenic CD8+ cytotoxic T cells were intravenously injected at 7, 24, 48, and 72 h post-tMCAo. Mice were sacrificed 4 days after stroke. Detailed quantification of post-stroke neural connectivity and neuroinflammation indicates a role for remote brain regions in stroke pathology and recovery. The workflow described herein, incorporating STPT and automated quantification of fluorescently labeled features of interest, provides a framework by which one can objectively evaluate labeled neuronal or lymphocyte populations in healthy and injured brains. The results provide region-specific quantification of neural connectivity and neuroinflammation, which could be a critical tool for investigating mechanisms of not only stroke recovery, but also a wide variety of brain injuries or diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA