Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Infect Immun ; 90(8): e0006122, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35913171

RESUMO

Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
2.
J Chem Inf Model ; 60(10): 4975-4984, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33017152

RESUMO

Colistin or polymyxin B is the last resort antibiotic to treat infections of multidrug-resistant Gram-negative bacteria by disrupting their outer membranes. The recent emergence of Gram-negative bacteria that demonstrate colistin resistance, particularly plasmid-mediated mobile colistin resistance (mcr), poses a big challenge to the treatment of multidrug resistance infections. Using molecular dynamics simulations, we explore the mechanism of colistin resistance in a model lipid A bilayer mimicking the Gram-negative mcr-1 bacterial outer membrane. The simulation results reveal that the outer membrane of normal Gram-negative bacteria is stabilized by salt bridges between positively charged divalent ions and negatively charged phosphate groups of the membranes. In the presence of positively charged polymyxin B, these salt bridges are disrupted, and calcium is released into the aqueous phase, resulting in membrane disruption. In contrast, the lipid A in the outer membrane of mcr-1 bacteria has a novel modification, this being a covalently attached phosphoethanolamine group. This group enables the formation of a large number of hydrogen bonds between the amine and phosphate groups, resulting in an electrostatic net on the membrane. This extensive noncovalent electrostatic cross-linking between the lipid molecules collectively enhances the membrane stability and results in resistance to the action of cationic peptides such as polymyxin B. The simulation results shed new atomistic insights for understanding the mechanistic basis of colistin resistance and provide clues for the design of new membrane disruptors and permeabilizers to treat mcr-1 infections.


Assuntos
Colistina , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Colistina/farmacologia , Bactérias Gram-Negativas , Plasmídeos
3.
Mol Cell Proteomics ; 17(10): 2034-2050, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006487

RESUMO

Although covalent protein binding is established as the pivotal event underpinning acetaminophen (APAP) toxicity, its mechanistic details remain unclear. In this study, we demonstrated that APAP induces widespread protein glutathionylation in a time-, dose- and bioactivation-dependent manner in HepaRG cells. Proteo-metabonomic mapping provided evidence that APAP-induced glutathionylation resulted in functional deficits in energy metabolism, elevations in oxidative stress and cytosolic calcium, as well as mitochondrial dysfunction that correlate strongly with the well-established toxicity features of APAP. We also provide novel evidence that APAP-induced glutathionylation of carnitine O-palmitoyltransferase 1 (CPT1) and voltage-dependent anion-selective channel protein 1 are respectively involved in inhibition of fatty acid ß-oxidation and opening of the mitochondrial permeability transition pore. Importantly, we show that the inhibitory effect of CPT1 glutathionylation can be mitigated by PPARα induction, which provides a mechanistic explanation for the prophylactic effect of fibrates, which are PPARα ligands, against APAP toxicity. Finally, we propose that APAP-induced protein glutathionylation likely occurs secondary to covalent binding, which is a previously unknown mechanism of glutathionylation, suggesting that this post-translational modification could be functionally implicated in drug-induced toxicity.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Metaboloma , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Cátions/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fenofibrato/farmacologia , Humanos , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Reprodutibilidade dos Testes , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Eye Contact Lens ; 46(3): 129-135, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31899695

RESUMO

Myopia is a global problem that is increasing at an epidemic rate in the world. Although the refractive error can be corrected easily, myopes, particularly those with high myopia, are susceptible to potentially blinding eye diseases later in life. Despite a plethora of myopia research, the molecular/cellular mechanisms underlying the development of myopia are not well understood, preventing the search for the most effective pharmacological control. Consequently, several approaches to slowing down myopia progression in the actively growing eyes of children have been underway. So far, atropine, an anticholinergic blocking agent, has been most effective and is used by clinicians in off-label ways for myopia control. Although the exact mechanisms of its action remain elusive and debatable, atropine encompasses a complex interplay with receptors on different ocular tissues at multiple levels and, hence, can be categorized as a shotgun approach to myopia treatment. This review will provide a brief overview of the biological mechanisms implicated in mediating the effects of atropine in myopia control.


Assuntos
Atropina/uso terapêutico , Antagonistas Muscarínicos/uso terapêutico , Midriáticos/uso terapêutico , Miopia/prevenção & controle , Criança , Progressão da Doença , Humanos , Soluções Oftálmicas , Refração Ocular
5.
Eye Contact Lens ; 46(5): 274-280, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32134799

RESUMO

OBJECTIVES: The purpose of this study was to develop a reproducible preclinical Fusarium solani keratitis model, which would allow comparative testing of currently available antifungals (NATACYN [Alcon, Fort Worth, TX], voriconazole 1%, and amphotericin B 0.1%) as well as efficacy testing of new antifungals for translation into clinical practice in the future. METHODS: The rabbit F. solani keratitis model was developed in New Zealand white rabbits using local and systemic immunosuppression. Infection was introduced by intrastromal injection of F. solani spores into one of the immunosuppressed rabbit eyes while the contralateral eye was a control. Progress of the infection was assessed by the clinical features, histopathology, and viable fungal counts. In this study, the efficacy of currently available antifungals (NATACYN [Alcon], voriconazole 1%, and amphotericin B 0.1%) was compared. Rabbits were randomly divided (n=4 in each group), and the respective antifungal was instilled topically 5 times/day for 7 days. Treatment effects were analyzed by evaluating the anterior segment with the help of slit-lamp, histopathological findings and viable fungal culture at the end of the experiment. RESULTS: We report the development of a reproducible and progressive rabbit F. solani keratitis model as shown by the substantial viable fungal counts (3 log CFU), the presence of large patchy lesions and substantial hypopyon in the 12-day model correlated with specific histopathological analysis for fungus (extended F. solani hyphae from midcorneal stroma into the anterior chamber and traverse Descemet membrane with anterior chamber suppurative plaque). Voriconazole 1% and NATACYN revealed significant reduction of the fungal wound area (P=0.02 and 0.021), respectively, while amphotericin B 0.1% exhibited P value of 0.083 compared with their infected nontreated controls. Voriconazole 1% and amphotericin B 0.1% showed significant viable fungal count differences (P=0.004 and 0.01), respectively, whereas P value of NATACYN was 0.337 compared with control infected corneas. CONCLUSION: The reported rabbit fungal keratitis model can be used for screening new antifungals and evaluating currently available antifungals to facilitate better clinical outcomes. Voriconazole 1% showed the best efficacy among the three tested currently available antifungals by showing the significant differences in both wound size and viable fungal count comparisons in our F. solani rabbit keratitis model.


Assuntos
Infecções Oculares Fúngicas , Fusarium , Ceratite , Preparações Farmacêuticas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Infecções Oculares Fúngicas/tratamento farmacológico , Ceratite/tratamento farmacológico , Coelhos
6.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344771

RESUMO

Leber's hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.


Assuntos
Atrofia Óptica Hereditária de Leber/metabolismo , Proteína S/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Suscetibilidade a Doenças , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Moleculares , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/etiologia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteína S/química , Proteoma , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Adulto Jovem
7.
J Transl Med ; 17(1): 38, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674317

RESUMO

BACKGROUND: The altered concentrations of amino acids were found in the bone marrow or blood of leukemia patients. Metabolomics technology combining mathematical model of biomarkers could be used for assisting the diagnosis of pediatric acute leukemia (AL). METHODS: The concentrations of 17 amino acids was measured by targeted liquid chromatograph-tandem mass spectrometry in periphery blood collected using dried blood spots. After evaluation, the mathematical models were further evaluated by prospective clinical validation cohort for AL diagnosis. RESULTS: The concentrations of 13 in 17 amino acids were statistically different between the periphery blood dried serum dots measured by targeted LC-MS/MS. The receiver operating characteristic analysis for the models of amino acid panel showed that the area under curve for AL diagnosis were 0.848, 0.834 and 0.856 by SVM, RF and XGBoost. The Kappa values in further prospectively evaluated clinical cohort were 0.697, 0.703 and 0.789 (p > 0.05) respectively, and the accuracies for the models were 84.86%, 85.20% and 89.46% respectively with further clinical validation. CONCLUSIONS: The established mathematical model is a faster, cheaper and more convenient way than conventional methods, and no significant difference on the effect of diagnosis comparing with conventional methods. The mathematical model can be clinically useful for assisting pediatric AL diagnosis.


Assuntos
Aminoácidos/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Modelos Biológicos , Algoritmos , Criança , Humanos , Curva de Aprendizado , Reprodutibilidade dos Testes
8.
Clin Proteomics ; 16: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30976209

RESUMO

BACKGROUND: Prevalence of many eye and ocular surface diseases increases with age. While the clinical characteristics and pathophysiologic mechanisms of these conditions are often either known or extensively studied, the effects of normal aging on tear film and ocular surface have not been as widely researched. METHODS: In order to examine the effects of aging on tear fluid proteomics, tear fluid samples were collected preoperatively from 115 subjects undergoing strabismus or refractive surgery using glass microcapillary tubes. In addition to their refractive error or strabismus, the subjects did not have any other current, known eye diseases. The non-pooled samples were analysed using NanoLC-TripleTOF implementing a sequential window acquisition of all theoretical fragment ion spectra mass spectrometry, resulting in quantified data of 849 proteins. RESULTS: According to correlation results, 17 tear proteins correlated significantly with increased age and many of these proteins were connected to inflammation, immune response and cell death. According to enrichment analysis, growth and survival of cells decreased while immune response and inflammation increased with aging. We also discovered several well-known, activated and inhibited upstream regulators, e.g. NF-κB, which has been previously connected to aging in numerous previous studies. CONCLUSIONS: Overall, the results show the common age-dependent alterations in tear fluid protein profile, which demonstrate similar age-associated alterations of biological functions previously shown in other tissue and sample types.

9.
Clin Proteomics ; 15: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069167

RESUMO

BACKGROUND: Advances in mass spectrometry have accelerated biomarker discovery in many areas of medicine. The purpose of this study was to compare two mass spectrometry (MS) methods, isobaric tags for relative and absolute quantitation (iTRAQ) and sequential window acquisition of all theoretical fragment ion spectra (SWATH), for analytical efficiency in biomarker discovery when there are multiple methodological constraints such as limited sample size and several time points for each patient to be analyzed. METHODS: A total of 140 tear samples were collected from 28 glaucoma patients at 5 time points in a glaucoma drug switch study. Samples were analyzed with iTRAQ and SWATH methods using NanoLC-MSTOF mass spectrometry. RESULTS: We discovered that even though iTRAQ is faster than SWATH with respect to analysis time per sample, it loses in sensitivity, reliability and robustness. While SWATH analysis yielded complete data of 456 proteins in all samples, with iTRAQ we were able to quantify 477 proteins in total but on average only 125 proteins were quantified in a sample. 283 proteins were common in the datasets produced by the two methods. Repeatability of the methods was assessed by calculating percent relative standard deviation (% RSD) between replicate MS analyses: SWATH was more repeatable (56% of proteins < 20% RSD), compared to iTRAQ (43% of proteins < 20% RSD). Despite the overall benefits of SWATH, both methods showed less than 1 log fold change difference in the expression of 74% common proteins. In addition, comparison to MS/MS peptide results using 8 isotopically labeled peptide standards, SWATH and iTRAQ showed similar results in terms of accuracy. Moreover, both methods detected similar trends in a longitudinal analysis of protein expression of two known tear biomarkers. CONCLUSIONS: Overall, we conclude that SWATH should be preferred for biomarker discovery studies when analyzing limited volumes of clinical samples collected at multiple time points. TRIAL REGISTERATION: The study was approved by the Ethics Committee at Tampere University Hospital and was registered in EU clinical trials register (EudraCT Number: 2010-021039-14).

10.
Amino Acids ; 50(10): 1329-1345, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066172

RESUMO

Multi-drug resistant pathogens have been of increasing concern today. There is an urgent need for the discovery of more potent antibiotics. Cationic antimicrobial peptides (CAMPs) are known to be effective antimicrobial agents against resistant pathogens. However, poor activity under physiological conditions is one of the major limitations of CAMPS in clinical applications. In this study, a series of oligo-lipidated arginyl peptide OLAP dimers comprised of a saturated fatty acid chain (with m number of carbon units) and p repeating units of arginyl fatty acid chains (with n number of carbon units) were designed and studied for their antimicrobial activities as well as their physico-chemical property in various physiological conditions, such as in human serum albumin and high salt conditions. Our results showed that OLAP-11 exhibits potent antimicrobial activity against Gram-positive bacteria with improved physico-chemical activity in various physiological conditions. OLAP-11 is also less susceptible to human serum and trypsin degradation. The HPLC-MS analysis showed that the lipid-arginine bond is very stable. SYTOX Green assay and scanning electron microscopy both show that the OLAP-11 killed bacteria via inner membrane disruption. In addition, OLAP-11 is inner membrane targeting, making it difficult for bacteria to develop resistance. Overall, the design of the OLAP dimers provides an alternative approach to improve the physicochemical activity, peptide stability of CAMPs with potent inner membrane disruption and low in vitro toxicity to increase their potential for clinical applications in the future.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ácidos Graxos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Dimerização , Desenho de Fármacos , Estabilidade de Medicamentos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Relação Estrutura-Atividade
11.
J Chem Phys ; 148(10): 104902, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544273

RESUMO

Molecular aggregation plays a significant role in modulating the solubility, permeability, and bioactivity of drugs. The propensity to aggregate depends on hydrophobicity and on molecular shape. Molecular dynamics simulations coupled with enhanced sampling methods are used to explore the early stages of oligomerization of two drug molecules which have a strong aggregation propensity, but with contrasting molecule shapes: the antibiotic ciprofloxacin and the anticancer drug Nutlin-3A. The planar shape of ciprofloxacin induces the formation of stable oligomers at all cluster sizes. The aggregation of ciprofloxacin is driven by two-body interactions, and transferring one ciprofloxacin molecule to an existing cluster involves the desolvation of two faces and the concomitant hydrophobic interactions between the two faces; thus, the corresponding free energy of oligomerization weakly depends on the oligomer size. By contrast, Nutlin-3A has a star-shape and hence can only form stable oligomers when the cluster size is greater than 8. Free energy simulations further confirmed that the free energy of oligomer formation for Nutlin-3A becomes more favorable as the oligomer becomes larger. The aggregation of star-shaped Nutlin-3A results from many-body interactions and hence the free energy of cluster formation is strongly dependent on the size. The findings of this study provide atomistic insights into how molecular shape modulates the aggregation behavior of molecules and may be factored into the design of drugs or nano-particles.


Assuntos
Ciprofloxacina/química , Imidazóis/química , Simulação de Dinâmica Molecular , Piperazinas/química , Interações Hidrofóbicas e Hidrofílicas
12.
Beilstein J Org Chem ; 14: 3059-3069, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30591828

RESUMO

Antibiotic resistance threatens effective treatment of microbial infections globally. This situation has spurred the hunt for new antimicrobial compounds in both academia and the pharmaceutical industry. Here, we report how the widely used antitumor drug cisplatin may be repurposed as an effective antimicrobial against the nosocomial pathogen Pseudomonas aeruginosa. Cisplatin was found to effectively kill strains of P. aeruginosa. In such experiments, transcriptomic profiling showed upregulation of the recA gene, which is known to be important for DNA repair, implicating that cisplatin could interfere with DNA replication in P. aeruginosa. Cisplatin treatment significantly repressed the type III secretion system (T3SS), which is important for the secretion of exotoxins. Furthermore, cisplatin was also demonstrated to eradicate in vitro biofilms and in vivo biofilms in a murine keratitis model. This showed that cisplatin could be effectively used to eradicate biofilm infections which were otherwise difficult to be treated by conventional antibiotics. Although cisplatin is highly toxic for humans upon systemic exposure, a low toxicity was demonstrated with topical treatment. This indicated that higher-than-minimal inhibitory concentration (MIC) doses of cisplatin could be topically applied to treat persistent and recalcitrant P. aeruginosa infections.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28784676

RESUMO

The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 µg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Alilamina/farmacologia , Animais , Aziridinas/farmacologia , Candidíase/tratamento farmacológico , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Testes de Sensibilidade Microbiana , Polietilenoimina/farmacologia , Polilisina/farmacologia , Polímeros/química , Infecções por Pseudomonas/tratamento farmacológico , Coelhos , Infecções Estafilocócicas/tratamento farmacológico
14.
Anal Chem ; 89(9): 4897-4906, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28391692

RESUMO

Data independent acquisition-mass spectrometry (DIA-MS) coupled with liquid chromatography is a promising approach for rapid, automatic sampling of MS/MS data in untargeted metabolomics. However, wide isolation windows in DIA-MS generate MS/MS spectra containing a mixed population of fragment ions together with their precursor ions. This precursor-fragment ion map in a comprehensive MS/MS spectral library is crucial for relative quantification of fragment ions uniquely representative of each precursor ion. However, existing reference libraries are not sufficient for this purpose since the fragmentation patterns of small molecules can vary in different instrument setups. Here we developed a bioinformatics workflow called MetaboDIA to build customized MS/MS spectral libraries using a user's own data dependent acquisition (DDA) data and to perform MS/MS-based quantification with DIA data, thus complementing conventional MS1-based quantification. MetaboDIA also allows users to build a spectral library directly from DIA data in studies of a large sample size. Using a marine algae data set, we show that quantification of fragment ions extracted with a customized MS/MS library can provide as reliable quantitative data as the direct quantification of precursor ions based on MS1 data. To test its applicability in complex samples, we applied MetaboDIA to a clinical serum metabolomics data set, where we built a DDA-based spectral library containing consensus spectra for 1829 compounds. We performed fragment ion quantification using DIA data using this library, yielding sensitive differential expression analysis.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Metaboloma , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Idoso , Clorófitas/química , Bases de Dados de Compostos Químicos/estatística & dados numéricos , Feminino , Humanos , Masculino , Metabolômica/estatística & dados numéricos , Fluxo de Trabalho
15.
Amino Acids ; 49(10): 1653-1677, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28823054

RESUMO

Infectious diseases impose serious public health burdens and continue to be a global public health crisis. The treatment of infections caused by multidrug-resistant pathogens is challenging because only a few viable therapeutic options are clinically available. The emergence and risk of drug-resistant superbugs and the dearth of new classes of antibiotics have drawn increasing awareness that we may return to the pre-antibiotic era. To date, lipopeptides have been received considerable attention because of the following properties: They exhibit potent antimicrobial activities against a broad spectrum of pathogens, rapid bactericidal activity and have a different antimicrobial action compared with most of the conventional antibiotics used today and very slow development of drug resistance tendency. In general, lipopeptides can be structurally classified into two parts: a hydrophilic peptide moiety and a hydrophobic fatty acyl chain. To date, a significant amount of design and synthesis of lipopeptides have been done to improve the therapeutic potential of lipopeptides. This review will present the current knowledge and the recent research in design and synthesis of new lipopeptides and their derivatives in the last 5 years.


Assuntos
Anti-Infecciosos , Lipopeptídeos , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Humanos , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/uso terapêutico
16.
Biochim Biophys Acta ; 1848(4): 1023-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25582665

RESUMO

Membrane active antimicrobials are a promising new generation of antibiotics that hold the potential to avert antibiotic resistance. However, poor understanding of the action mechanism and the lack of general design principles have impeded their development. Here we extend the concept of fragment based drug design and propose a pharmacophore model based on first principles for the design of membrane active antimicrobials against Gram positive pathogens. Elaborating on a natural xanthone-based hydrophobic scaffold, two derivatives of the pharmacophore model are proposed, and these demonstrate excellent antimicrobial activity. Rigorous molecular dynamics simulations combined with biophysical experiments suggest a three-step mechanism of action (absorption-translocation-disruption) which allows us to identify key factors for the practical optimization of each fragment of the pharmacophore. Moreover, the model matches the structures of several membrane active antimicrobials which are currently in clinical trials. Our model provides a novel and rational approach for the design of bactericidal molecules that target the bacterial membrane.


Assuntos
Anti-Infecciosos/farmacologia , Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Xantonas/farmacologia , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Córnea/citologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fluoresceínas/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Coelhos , Infecções Estafilocócicas/virologia , Xantonas/química
17.
Antimicrob Agents Chemother ; 60(1): 24-35, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459903

RESUMO

Microbial infections of the cornea are potentially devastating and can result in permanent visual loss or require vision-rescuing surgery. In recent years, there has been an increasing number of reports on nontuberculous mycobacterial infections of the cornea. Challenges to the management of nontuberculous mycobacterial keratitis include delayed laboratory detection, low index of clinical suspicion, poor drug penetration, slow response to therapy, and prolonged use of antibiotic combinations. The ability of nontuberculous mycobacteria to evade the host immune response and the ability to adhere and to form biofilms on biological and synthetic substrates contribute to the issue. Therefore, there is an urgent need for new antimicrobial compounds that can overcome these problems. In this study, we evaluated the biofilm architectures for Mycobacterium chelonae and Mycobacterium fortuitum in dynamic flow cell chamber and 8-well chamber slide models. Our results showed that mycobacterial biofilms were quite resistant to conventional antibiotics. However, DNase treatment could be used to overcome biofilm resistance. Moreover, we successfully evaluated a new antimicrobial compound (AM-228) that was effective not only for planktonic mycobacterial cells but also for biofilm treatment and was compared favorably with the most successful "fourth-generation" fluoroquinolone, gatifloxacin. Finally, a new treatment strategy emerged: a combination of DNase with an antibiotic was more effective than an antibiotic alone.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Desoxirribonucleases/farmacologia , Mycobacterium chelonae/efeitos dos fármacos , Mycobacterium fortuitum/efeitos dos fármacos , Xantonas/farmacologia , Animais , Antibacterianos/síntese química , Biofilmes/crescimento & desenvolvimento , Córnea/efeitos dos fármacos , Córnea/microbiologia , Cultura em Câmaras de Difusão , Sinergismo Farmacológico , Quimioterapia Combinada , Fluoroquinolonas/farmacologia , Gatifloxacina , Mycobacterium chelonae/fisiologia , Mycobacterium fortuitum/fisiologia , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Coelhos , Reologia , Cicatrização/efeitos dos fármacos , Xantonas/síntese química
18.
J Proteome Res ; 14(9): 3982-95, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26260330

RESUMO

"Dry eye" is a multifactorial inflammatory disease affecting the ocular surface. Tear hyperosmolarity in dry eye contributes to inflammation and cell damage. Recent research efforts on dry eye have been directed toward biomarker discovery for diagnosis, response to treatment, and disease mechanisms. This study employed a spontaneously immortalized normal human conjunctival cell line, IOBA-NHC, as a model to investigate hyperosmotic stress-induced changes of metabolites and proteins. Global and targeted metabonomic analyses as well as proteomic analysis were performed on IOBA-NHC cells incubated in serum-free media at 280 (control), 380, and 480 mOsm for 24 h. Twenty-one metabolites and seventy-six iTRAQ-identified proteins showed significant changes under at least one hyperosmotic stress treatment as compared with controls. SWATH-based proteomic analysis further confirmed the involvement of inflammatory pathways such as prostaglandin 2 synthesis in IOBA-NHC cells under hyperosmotic stress. This study is the first to identify glycerophosphocholine synthesis and O-linked ß-N-acetylglucosamine glycosylation as key activated pathways in ocular surface cells under hyperosmotic stress. These findings extend the current knowledge in metabolite markers of dry eye and provide potential therapeutic targets for its treatment.


Assuntos
Túnica Conjuntiva/citologia , Células Epiteliais/fisiologia , Metaboloma/fisiologia , Pressão Osmótica/fisiologia , Proteoma/análise , Linhagem Celular , Síndromes do Olho Seco , Humanos , Marcação por Isótopo , Metaboloma/efeitos dos fármacos , Metabolômica , Pressão Osmótica/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteoma/efeitos dos fármacos , Proteômica
19.
PLoS Genet ; 8(6): e1002753, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685421

RESUMO

As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, ß = -0.16 mm per minor allele, P(meta) =2.69 × 10(-10)). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) =0.75, 95% CI: 0.68-0.84, P(meta) =4.38 × 10(-7)) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 1/genética , Estudo de Associação Genômica Ampla , Miopia/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Animais , Proteínas de Transporte de Cátions/genética , Criança , China , Modelos Animais de Doenças , Feminino , Expressão Gênica , Predisposição Genética para Doença , Humanos , Lisofosfolipase/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares , Proteínas de Ligação a RNA , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Esclera/metabolismo , Esclera/patologia , Transportador 8 de Zinco
20.
J Proteome Res ; 13(11): 4647-58, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25211393

RESUMO

Atropine, a muscarinic antagonist, is known to inhibit myopia progression in several animal models and humans. However, the mode of action is not established yet. In this study, we compared quantitative iTRAQ proteomic analysis in the retinas collected from control and lens-induced myopic (LIM) mouse eyes treated with atropine. The myopic group received a (-15D) spectacle lens over the right eye on postnatal day 10 with or without atropine eye drops starting on postnatal day 24. Axial length was measured by optical low coherence interferometry (OLCI), AC-Master, and refraction was measured by automated infrared photorefractor at postnatal 24, 38, and 52 days. Retinal tissue samples were pooled from six eyes for each group. The experiments were repeated twice, and technical replicates were also performed for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. MetaCore was used to perform protein profiling for pathway analysis. We identified a total of 3882 unique proteins with <1% FDR by analyzing the samples in replicates for two independent experiments. This is the largest number of mouse retina proteome reported to date. Thirty proteins were found to be up-regulated (ratio for myopia/control > global mean ratio + 1 standard deviation), and 28 proteins were down-regulated (ratio for myopia/control < global mean ratio - 1 standard deviation) in myopic eyes as compared with control retinas. Pathway analysis using MetaCore revealed regulation of γ-aminobutyric acid (GABA) levels in the myopic eyes. Detailed analysis of the quantitative proteomics data showed that the levels of GABA transporter 1 (GAT-1) were elevated in myopic retina and significantly reduced after atropine treatment. These results were further validated with immunohistochemistry and Western blot analysis. In conclusion, this study provides a comprehensive quantitative proteomic analysis of atropine-treated mouse retina and suggests the involvement of GABAergic signaling in the antimyopic effects of atropine in mouse eyes. The GABAergic transmission in the neural retina plays a pivotal role in the maintenance of axial eye growth in mammals.


Assuntos
Atropina/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Miopia/metabolismo , Proteômica/métodos , Retina/metabolismo , Animais , Western Blotting , Cromatografia Líquida , Interferometria , Camundongos , Miopia/tratamento farmacológico , Refração Ocular/efeitos dos fármacos , Refração Ocular/fisiologia , Retina/efeitos dos fármacos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA