RESUMO
This study aims to probe into new series of heterobimetallic PtII-AuI complexes with a general formula of [Pt(p-MeC6H4)(dfppy)(µ-dppm)Au(NHC)]OTf, NHC = IPr, 2; IMes, 3; dfppy = 2-(2,4-difluorophenyl)pyridinate; dppm = 1,1-bis(diphenylphosphino)methane, which are the resultant of the reaction between [Pt(p-MeC6H4)(dfppy)(κ1-dppm)], 1, with [AuCl(NHC)], NHC = IPr, B; IMes, C, in the presence of [Ag(OTf)]. In the heterobimetallic complexes, the dppm ligand is settled between both metals as an unsymmetrical bridging ligand. Several techniques are employed to characterize the resulting compounds. Moreover, the photophysical properties of the complexes are investigated by means of UV-vis and photoluminescence spectroscopy. Furthermore, the experimental study is enriched by ab initio calculations (density functional theory (DFT) and time-dependent DFT (TD-DFT)) to assess the role of Pt and Au moieties in the observed optical properties. It is revealed that 1-3 is luminescent in the solid state and solution at different temperatures. In addition, the achieved results indicate the emissive properties of 1-3 are originated from a mixed 3IL/3MLCT excited state with major contribution of intraligand charge transfer (dfppy). A comparative study is conducted into the cytotoxic activities of starting materials and 1-3 against different human cancer cell lines such as the pancreas (MIA-PaCa2), breast (MDA-MB-231), cervix (HeLa), and noncancerous breast epithelial cell line (MCF-10A). The achieved results suggest the heterobimetallic PtII-AuI species as optimal compounds that signify the existence of cooperative and synergistic effects in their structures. The complex 3 is considered as the most cytotoxic compound with the maximum selectivity index in our screened complex series. Moreover, it is disclosed that 3 effectively causes cell death by inducing apoptosis in MIA-PaCa2 cells. Furthermore, the finding results by fluorescent cell microscopy manifest cytoplasmic staining of 3 rather than nucleus.
Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Metano/farmacologia , Células HeLa , Análise Espectral/métodosRESUMO
This work reports the synthesis and characterization of a new C^N-based cycloplatinated(II) fluoride complex, [Pt(ppy)(PPh3)F] (2; ppy = 2-phenylpyridinate), involving a Pt-F bond. The new complex is highly luminescent in the green area with a high quantum yield of 94.6% at 77 K. A comparison study of the heavier halogen derivatives reveals a descending emission quantum yield order of F > Cl > Br > I. Time-dependent density functional theory calculations ascribe the decreased emission efficiency to the decreasing trend of an intraligand (IL) transition from F to I, which accounts for the major radiative pathway. In addition, 2 is capable of the fluorinating alkyl halides, leading to Csp3-F bond formation at room temperature.
RESUMO
Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant. The product, a protected 1,2-aminoalcohol, is formed selectively and with high efficiency using this recyclable heterogeneous catalyst. Significantly, the unusual regioselective transformation occurs only when an Fe-decorated Hf6 node and the Fe-porphyrin strut work in concert. This report is an example of concurrent orthogonal tandem catalysis.
RESUMO
Porous heterogeneous catalysts play a pivotal role in the chemical industry. Herein a new Hf-based metal-organic framework (Hf-NU-1000) incorporating Hf6 clusters is reported. It demonstrates high catalytic efficiency for the activation of epoxides, facilitating the quantitative chemical fixation of CO2 into five-membered cyclic carbonates under ambient conditions, rendering this material an excellent catalyst. As a multifunctional catalyst, Hf-NU-1000 is also efficient for other epoxide activations, leading to the regioselective and enantioretentive formation of 1,2-bifuctionalized systems via solvolytic nucleophilic ring opening.
RESUMO
Metalation of covalent organic frameworks (COFs) is a critical strategy to functionalize COFs for advanced applications yet largely relies on the pre-installed specific metal docking sites in the network, such as porphyrin, salen, 2,2'-bipyridine, etc. We show in this study that the imine linkage of simple imine-based COFs, one of the most popular COFs, readily chelate transition metal (Ir in this work) via cyclometalation, which has not been explored before. The iridacycle decorated COF exhibited more than 10-fold efficiency enhancement in (photo)catalytic hydrogen evolution from aqueous formate solution than its molecular counterpart under mild conditions. This work will inspire more functional cyclometallated COFs to be explored beyond catalysis considering the large imine COF library and the rich metallacycle chemistry.
RESUMO
A family of cationic cycloplatinated(II) complexes [Pt(dfppy)(P^P)]Cl, dfppy = 2-(2,4-difluorophenyl)pyridine, incorporating bisphosphine ligands, P^P = bis(diphenylphosphino)methane (1, dppm), 1,2-bis(diphenylphosphino)ethane (2, dppe) and 1,2-bis(diphenylphosphino)benzene (3, dppbz), was prepared. The complexes were characterized by means of several analytical and spectroscopic methods. These complexes displayed acceptable stability in the biological environments which was confirmed by NMR, HR ESI-MS and UV-vis techniques. The antiproliferative properties of these complexes were evaluated by National Cancer Institute (NCI) at National Institutes of Health (NIH) against 60 different human tumor cell lines such as leukemia, melanoma, lung, colon, brain, ovary, breast, prostate and kidney. These complexes showed higher cytotoxicity than cisplatin against a wide variety of cancer cell lines such as K-562 (leukemia), HOP-92 (lung), HCT-116 (colon), OVCAR-8 (ovarian), PC-3 (prostate), MDA-MB-468 (breast), and melanoma cancer cell lines. Complex 3 as the most potent compound in this study furnished an excellent anti-proliferative activity compared to the cisplatin against Hela, SKOV3, and MCF-7 cancer cell lines. The main mode of the interaction of 1-3 with DNA was also determined using molecular docking studies.
RESUMO
The field of photodynamic therapy (PDT) has continued to show promise as a potential method for treating tumors. In this work a photosensitizer (PS) has been delivered to cancer cell lines for PDT by incorporation into the metal-organic framework (MOF) as an organic linker. By functionalizing the surface of MOF nanoparticles with maltotriose the PS can efficiently target cancer cells with preferential uptake into pancreatic and breast cancer cell lines. Effective targeting overcomes some current problems with PDT including long-term photosensitivity and tumor specificity. Developing a PS with optimal absorption and stability is one of the foremost challenges in PDT and the synthesis of a chlorin which is activated by long-wavelength light and is resistant to photo-bleaching is described. This chlorin-based MOF shows anti-cancer ability several times higher than that of porphyrin-based MOFs with little toxicity to normal cell lines and no dark toxicity.
Assuntos
Compostos Organometálicos/química , Neoplasias Pancreáticas/terapia , Fotoquimioterapia , Porfirinas/química , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Estrutura Molecular , NanoestruturasRESUMO
New linkages for covalent organic frameworks (COFs) have been continuously pursued by chemists as they serve as the structure and property foundation for the materials. Developing new reaction types or modifying known linkages have been the only two methods to create new COF linkages. Herein, we report a novel strategy that uses H3PO3 as a bifunctional catalyst to achieve amine-linked COFs from readily available amine and aldehyde linkers. The acidic proton of H3PO3 catalyzes the imine framework formation, which is then in situ reduced to the amine COF by the reductive P-H moiety. The amine-linked COF outperforms its imine analogue in promoting Knoevenagel condensation because of the more basic sites and higher stability.
RESUMO
A new covalent organic framework (COF) based on imine bonds was assembled from 2-(4-formylphenyl)-5-formylpyridine and 1,3,6,8-tetrakis(4-aminophenyl)pyrene, which showed an interesting dual-pore structure with high crystallinity. Postmetallation of the COF with Pt occurred selectively at the N donor (imine and pyridyl) in the larger pores. The metallated COF served as an excellent recyclable heterogeneous photocatalyst for decarboxylative difluoroalkylation and oxidative cyclization reactions.
RESUMO
Hyper-cross-linked microporous organic polymers are a class of porous materials that have captured widespread attention owing to their high surface areas and wide range of monomeric sources. Balancing economy with performance is the initial hurdle when designing effective hyper-cross-linked microporous organic polymers. Herein, we demonstrated an inexpensive sulfurated solvent-knitted hyper-cross-linked microporous polymer scaffold, named sulfur-decorated hyper-cross-linked coal tar (CTHP-SES), utilizing coal tar as an aromatic monomer with numerous positions for potential chelation of toxic metals, particularly mercury, from water. The resulting material illustrated selective adsorption of mercury from both water (1037 mg g-1) and the gas phase (416 mg g-1) with rapid kinetics (183.67 mg min-1 g-1), good recyclability (4 runs), and excellent stability under both strong basic and acidic conditions. CTHP-SES was able to reduce the concentration of the Hg(II) solution from 1 mg L-1 to 32 µg L-1 after 10 min due in part to the promising distribution coefficient (Kd = 2.371 × 106 mL g-1). These results show that CTHP-SES offers a promising and practical platform to cope with a variety of environmental contaminations.
RESUMO
Recently, it has been shown that enzyme encapsulation inside metal-organic frameworks (MOFs) can increase enzyme activity and serve as protection from adverse environmental conditions. Little is understood about how the enzymes move into and are held inside the MOFs although it is believed that intermolecular forces between the MOF and the enzyme cause it to be held in place. If this process can be better understood, it can have dramatic implications on the cost-effectiveness and implementation of enzyme-MOF complexes. This is of specific importance in the medical sector for protein therapy and the industrial sector where enzyme use is expected to increase. Herein, we synthesized alcohol dehydrogenase (ADH) and PCN-333 to study encapsulation, stability, and enzyme activity to expand the knowledge of our field and offer a potential improvement to a synthetic route for biofuel synthesis. From this, we found a correlation between the concentration of a buffer and the loading of an enzyme, with surprising loading trends. We conclude that the buffer solution decreases interactions between the enzyme and MOF, supporting conventional theory and allowing it to penetrate deeper into the structure causing higher enzyme loading while allowing for excellent stability over time at various pH values and temperatures and after multiple reactions. We also observe new trends such as a rebounding effect in loading and "out-of-bounds" reactions.
Assuntos
Álcool Desidrogenase/química , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Biocatálise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
Two-dimensional urea- and thiourea-containing covalent organic frameworks (COFs) were synthesized at ambient conditions at large scale within 1 h in the absence of an acid catalyst. The site-isolated urea and thiourea in the COF showed enhanced catalytic efficiency as a hydrogen-bond-donating organocatalyst compared to the molecular counterparts in epoxide ring-opening reaction, aldehyde acetalization, and Friedel-Crafts reaction. The COF catalysts also had excellent recyclability.
RESUMO
Histone deacetylase 6 (HDAC6) is a multifunctional cytoplasmic enzyme involved in diverse cellular processes such as intracellular transport and protein quality control. Inhibition of HDAC6 can alleviate defects in cell and rodent models of certain diseases, particularly neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. However, while HDAC6 represents a potentially powerful therapeutic target, development of effective brain-penetrant HDAC6 inhibitors remains challenging. Recently, [18F]EKZ-001 ([18F]Bavarostat), a brain-penetrant positron emission tomography (PET) radioligand with high affinity and selectivity toward HDAC6, was developed and evaluated preclinically for its ability to bind HDAC6. Herein, we describe the efficient and robust fully automated current Good Manufacturing Practices (cGMP) compliant production method. [18F]EKZ-001 quantification methods were validated in nonhuman primates (NHP) using full kinetic modeling, and [18F]EKZ-001 PET was applied to compare dose-occupancy relationships between two HDAC6 inhibitors, EKZ-317 and ACY-775. [18F]EKZ-001 is cGMP produced with an average decay-corrected radiochemical yield of 14% and an average molar activity of 204 GBq/µmol. We demonstrate that a two-tissue compartmental model and Logan graphical analysis are appropriate for [18F]EKZ-001 PET quantification in NHP brain. Blocking studies show that the novel compound EKZ-317 achieves higher target occupancy than ACY-775. This work supports the translation of [18F]EKZ-001 PET for first-in-human studies.
Assuntos
Encéfalo/enzimologia , Radioisótopos de Flúor/farmacologia , Desacetilase 6 de Histona/metabolismo , Ácidos Hidroxâmicos/farmacologia , Pirimidinas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , GMP Cíclico/biossíntese , Radioisótopos de Flúor/química , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/químicaRESUMO
Several straightforward and practical processes have been established for the construction of 2-aminothiazoles, 1,3-thiazoles and 1,3-selenazoles from aryliodoazides. These strategies successfully proceed with a wide spectrum of substituted thioamides and its derivatives producing the resulting five-membered heterocycles obtained in satisfactory yields. The unique features of these protocols are operational simplicity and highly functional group tolerance, which make them convenient and practical routes for the preparation of various libraries of 2-aminothiazoles, 1,3-thiazoles, and 1,3-selenazoles.
Assuntos
Azidas/química , Azóis/síntese química , Hidrocarbonetos Iodados/química , Tiazóis/síntese química , Azóis/química , Técnicas de Química Combinatória , Estrutura Molecular , Compostos Organosselênicos , Tiazóis/químicaRESUMO
A practical and efficient synthetic procedure to novel chromeno[3,2-d]oxazoles through a one-pot sequential multistep process is presented. This procedure proceeds efficiently in propylene carbonate (PC) as a green solvent and affords a wide range of the chromenooxazole scaffolds.
Assuntos
Oxazóis/síntese química , Técnicas de Química Combinatória , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Oxazóis/química , Propano/análogos & derivados , Propano/químicaRESUMO
Carbon dots (CDs), as a new generation of fluorescent nanoparticles, have been greatly considered for different biomedical applications. In the present study, a one-pot hydrothermal method was developed for the synthesis of a series of carbon dots (CDs) for cancer imaging and therapy. Taxane diterpenoids were utilized as the carbon source, different diamines were used as the nitrogen source, and folic acid was used as a targeting agent. High-quality photostable and multicolor (blue and green) carbon nanocrystals with a hexagonal shape, a narrow size distribution of less than 20 nm, and high fluorescence quantum yield of up to 50.4% were obtained from taxanes in combination with m-phenylenediamine and folic acid to give the best results. The nanoparticles displayed a potent anticancer activity with IC50 values of 31.3 ± 2.7 and 34.1 ± 1.1 µg mL-1 for the human MCF-7 and HeLa cancer cell lines, respectively, and IC50 value of 120.5 ± 3.8 µg mL-1 on the normal human fibroblast cells. The flow cytometry studies determined apoptosis-mediated cell death as the main anticancer mechanism of CDs, and the molecular studies revealed the induction of both extrinsic and intrinsic apoptosis pathways. The overall results indicated the great potential of synthesized CDs for the simultaneous cancer imaging and therapy.