Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Transfusion ; 62 Suppl 1: S98-S104, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748674

RESUMO

BACKGROUND: There is increasing interest in leukoreduced whole blood (WB) as a transfusion product for trauma patients. In some jurisdictions, few leukoreduced filters are approved or appropriate for WB leukoreduction and quality information is therefore limited. This study assessed the impact of filtration timing of WB collected in CPDA-1 versus CPD on in vitro quality. STUDY DESIGN AND METHODS: WB was collected in CPDA-1 or CPD and leukoreduction filtered either after 3-8 h (early) or 18-24 h (late) from stop bleed time. In vitro quality was assessed after filtration and throughout 5 weeks of storage at 4°C. Cell count and hemoglobin levels were determined by hematology analyzer, platelet activation and responsiveness to ADP by surface expression of P-selectin by flow cytometry, hemolysis by HemoCue, and metabolic parameters by blood gas analyzer. Hemostatic properties were assessed by rotational thromboelastometry. Plasma protein activities and clotting times were determined by automated coagulation. RESULTS: Although there were some data points which showed statistically significant differences associated with anticoagulant choices or the filtration timing, no general trend in inferiority/performance could be discerned. After 35 days' storage, only clotting time, alpha angle and factor II in the early filtration arm comparing anticoagulants and prothrombin time and factor II in the CPDA-1 study arm comparing filtration timing showed a significant difference. CONCLUSION: In vitro WB quality seems to be independent on the choice of anticoagulant and filtration timing supporting WB hold-times to up to 24 h, increasing operational flexibility for transfusion services.


Assuntos
Preservação de Sangue , Procedimentos de Redução de Leucócitos , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Plaquetas/metabolismo , Humanos , Protrombina
2.
Transfusion ; 62(2): 418-428, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907536

RESUMO

BACKGROUND: Randomized clinical trial data show that early plasma transfusion may save lives among trauma patients. Supplying plasma in remote environments is logistically challenging. Freeze-dried plasma (FDP) offers a possible solution. STUDY DESIGN AND METHODS: A Terumo BCT plasma freeze-drying system was evaluated. We compared pooled frozen plasma (FP) units with derived Terumo BCT FDP (TFDP) units and pooled COVID-19 convalescent apheresis fresh-frozen plasma (CC-AFFP) with derived CC-TFDP units. Parameters measured were: coagulation factors (F) II; V; VII; VIII; IX; XI; XIII; fibrinogen; Proteins C (PC) and S (PS); antithrombin (AT); α2 -antiplasmin (α2 AP); ADAMTS13; von Willebrand Factor (vWF); thrombin-antithrombin (TAT); D-dimer; activated complement factors 3 (C3a) and 5 (C5a); pH; osmolality; prothrombin time (PT); and activated partial thromboplastin time (aPTT). Antibodies to SARS-CoV-2 in CC-AFFP and CC-TFDP units were compared by plaque reduction assays and viral protein immunoassays. RESULTS: Most parameters were unchanged in TFDP versus FP or differed ≤15%. Mean aPTT, PT, C3a, and pH were elevated 5.9%, 6.9%, 64%, and 0.28 units, respectively, versus FP. CC-TFDP showed no loss of SARS-CoV-2 neutralization titer versus CC-AFFP and no mean signal loss in most pools by viral protein immunoassays. CONCLUSION: Changes in protein activities or clotting times arising from freeze-drying were <15%. Although C3a levels in TFDP were elevated, they were less than literature values for transfusable plasma. SARS-CoV-2-neutralizing antibody titers and viral protein binding levels were largely unaffected by freeze-drying. In vitro characteristics of TFDP or CC-TFDP were comparable to their originating plasma, making future clinical studies appropriate.


Assuntos
Remoção de Componentes Sanguíneos , Transfusão de Componentes Sanguíneos , COVID-19 , Liofilização , Antitrombinas , COVID-19/terapia , Canadá , Hemostáticos , Humanos , Imunização Passiva , Plasma , SARS-CoV-2 , Proteínas Virais , Soroterapia para COVID-19
3.
Vox Sang ; 117(3): 328-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34346087

RESUMO

BACKGROUND AND OBJECTIVES: Frozen plasma (FP) is thawed prior to transfusion and stored for ≤5 days at 1-6°C. The effect of temperature excursions on the quality and safety of thawed plasma during 5-day storage was determined. MATERIALS AND METHODS: Four plasma units were pooled, split and stored at ≤-18°C for ≤90 days. Test units T30 and T60 were exposed to 20-24°C (room temperature [RT]) for 30 or 60 min, respectively, on days 0 and 2 of storage. Negative and positive control units remained refrigerated or at RT for 5 days, respectively. On Day 5, test units were exposed once to RT for 5 h. Quality assays included stability of coagulation factors FV, FVII, FVIII, fibrinogen and prothrombin time. Bacterial growth was performed in units inoculated with ~1 CFU/ml or ~100 CFU/ml of Serratia liquefaciens, Pseudomonas putida, Pseudomonas aeruginosa or Staphylococcus epidermidis on Day 0. RESULTS: Testing results of all quality parameters were comparable between T30 and T60 units (p < 0.05). Serratia liquefaciens proliferated in cold-stored plasma, while P. putida showed variable viability. Serratia epidermidis and P. aeruginosa survived but did not grow in cold-stored plasma. Positive and negative controls showed expected results. Overall, no statistical differences in bacterial concentration between T30 and T60 units were observed (p < 0.05). CONCLUSION: Multiple RT exposures for 30 or 60 min do not affect the stability of coagulation factors or promote bacterial growth in thawed plasma stored for 5 days. It is therefore safe to expose thawed plasma to uncontrolled temperatures for limited periods of 60 min.


Assuntos
Preservação de Sangue , Criopreservação , Fatores de Coagulação Sanguínea , Preservação de Sangue/métodos , Criopreservação/métodos , Congelamento , Humanos , Plasma
4.
Transfus Apher Sci ; 61(2): 103412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35283031

RESUMO

Critically injured persons suffer trauma, hemorrhage, and high mortality. A subset of such patients develops early coagulation dysfunction characterized as acute traumatic coagulopathy (ATC), with a poor prognosis. The mechanisms contributing to ATC remain incompletely understood. Notwithstanding some successes in conducting clinical trials in early traumatic coagulopathy, conducting clinical research in ATC is ethically and logistically challenging. In vitro studies cannot capture the complex pathophysiological interplay between blood, vasculature, and organ systems relevant to ATC. Animal models are therefore vital for understanding ATC and to test interventions. Previous systematic reviews of animal models of ATC covered progress up to 2014. The current review aimed to extend that coverage to the end of 2021. A structured systematic search of MEDLINE/PubMed was carried out and identified 56 relevant publications. Unlike in previous reviews, where pig models predominated, rat and pig models contributed equally (19 studies each), and non-human primate models entered the field. Most studies now featured defined trauma (39 of 56), and hemorrhage controlled by pressure or volume (42 studies), with some documenting that both were necessary to induce ATC. Most studies documented coagulopathy using clotting or viscoelastometric assays and created an endogenous coagulopathy not dependent on iatrogenic dilution. As before, the diversity of species and experimental protocols may limit the translatability of the identified studies. Thus, while animal research has become more aligned to clinical realities since 2014, further efforts are required to unravel ATC mechanisms and enable the prediction and evaluation of optimal clinical interventions.


Assuntos
Transtornos da Coagulação Sanguínea , Ferimentos e Lesões , Animais , Coagulação Sanguínea , Transtornos da Coagulação Sanguínea/etiologia , Modelos Animais de Doenças , Hemorragia , Humanos , Ratos , Suínos , Ferimentos e Lesões/complicações
5.
Transfusion ; 61 Suppl 1: S131-S143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269454

RESUMO

BACKGROUND: Leukoreduced whole blood (LR-WB) has received renewed attention as alternative to component-based transfusion in trauma. According to the manufacturer's instructions, leukoreduction should be carried out within 8 h after collection. This study assessed impact of (1) WB collection bag, (2) LR filtration, and (3) timing of filtration on in vitro quality. STUDY DESIGN AND METHODS: WB collected into different vendor bags was held at room temperature for <8 h or >16 h but <24 h prior to LR. In vitro quality was assessed before and after filtration, and throughout 3 weeks of storage at 4°C. Cell count and hemoglobin levels were determined by hematology analyzer, platelet activation, and responsiveness to ADP by surface expression of P-selectin by flow cytometry, hemolysis by HemoCue, and metabolic parameters by blood gas analyzer. Hemostatic properties were assessed by rotational thromboelastometry. Plasma protein activities and clotting times were determined by automated coagulation analyzer or quantitative immunoblotting. RESULTS: Bag type had no impact on WB in vitro quality. LR by filtration had some impact, but is aligned with data in the literature. The time between donation and filtration resulted in some statistically significant differences in metabolic activity, platelet yield, platelet activation, and factor protein activity initially; however, these differences in in vitro quality attributes decreased throughout 21-day cold storage. CONCLUSION: WB hold time showed only a minor impact on WB in vitro quality, so it may be possible for blood processing facilities to explore extended hold times prior to filtration in order to provide greater operational flexibility.


Assuntos
Preservação de Sangue/métodos , Contagem de Células Sanguíneas , Temperatura Baixa , Hemólise , Hemostasia , Humanos , Procedimentos de Redução de Leucócitos/métodos , Ativação Plaquetária , Tromboelastografia
6.
Cell Physiol Biochem ; 45(2): 772-782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29414798

RESUMO

BACKGROUND/AIMS: The Kunitz Protease Inhibitor (KPI) domain of protease nexin 2 (PN2) potently inhibits coagulation factor XIa. Recombinant KPI has been shown to inhibit thrombosis in mouse models, but its clearance from the murine circulation remains uncharacterized. The present study explored the pharmacokinetic and pharmacodynamic effects of fusing KPI to human serum albumin (HSA) in fusion protein KPIHSA. METHODS: Hexahistidine-tagged KPI (63 amino acids) and KPIHSA (656 amino acids) were expressed in Pichia pastoris yeast and purified by nickel-chelate chromatography. Clearance profiles in mice were determined, as well as the effects of KPI or KPIHSA administration on FeCl3-induced vena cava thrombus size or carotid artery time to occlusion, respectively. RESULTS: Fusion to HSA increased the mean terminal half-life of KPI by 8-fold and eliminated its interaction with the low density lipoprotein receptor-related protein. KPI and KPIHSA similarly reduced thrombus size and occlusion in both venous and arterial thrombosis models when administered at the time of injury, but only KPI was effective when administered one hour before injury. CONCLUSIONS: Albumin fusion deflects KPI from rapid in vivo clearance without impairing its antithrombotic properties and widens its potential therapeutic window.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Albumina Sérica Humana/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Área Sob a Curva , Fatores de Coagulação Sanguínea/antagonistas & inibidores , Fatores de Coagulação Sanguínea/metabolismo , Cloretos/toxicidade , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Compostos Férricos/toxicidade , Meia-Vida , Histidina/genética , Humanos , Radioisótopos do Iodo/química , Camundongos , Oligopeptídeos/genética , Domínios Proteicos/genética , Curva ROC , Receptores de LDL/química , Receptores de LDL/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/uso terapêutico , Albumina Sérica Humana/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trombose/induzido quimicamente , Trombose/prevenção & controle
7.
BMC Biotechnol ; 18(1): 21, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621998

RESUMO

BACKGROUND: Hirudin is a potent thrombin inhibitor but its antithrombotic properties are offset by bleeding side-effects. Because hirudin's N-terminus must engage thrombin's active site for effective inhibition, fusing a cleavable peptide at this site may improve hirudin's risk/benefit ratio as a therapeutic agent. Previously we engineered a plasmin cleavage site (C) between human serum albumin (HSA) and hirudin variant 3 (HV3) in fusion protein HSACHV3. Because coagulation factor XI (FXI) is more involved in thrombosis than hemostasis, we hypothesized that making HV3 activity FXIa-dependent would also improve HV3's potential therapeutic profile. We combined albumin fusion for half-life extension of hirudin with positioning of an FXIa cleavage site N-terminal to HV3, and assessed in vitro and in vivo properties of this novel protein. RESULTS: FXIa cleavage site EPR was employed. Fusion protein EPR-HV3HSA but not HSAEPR-HV3 was activated by FXIa in vitro. FVIIa, FXa, FXIIa, or plasmin failed to activate EPR-HV3HSA. FXIa-cleavable EPR-HV3HSA reduced the time to occlusion of ferric chloride-treated murine arteries and reduced fibrin deposition in murine endotoxemia; noncleavable mycHV3HSA was without effect. EPR-HV3HSA elicited less blood loss than constitutively active HV3HSA in murine liver laceration or tail transection but extended bleeding time to the same extent. EPR-HV3HSA was partially activated in citrated human or murine plasma to a greater extent than HSACHV3. CONCLUSIONS: Releasing the N-terminal block to HV3 activity using FXIa was an effective way to limit hirudin's bleeding side-effects, but plasma instability of the exposed EPR blocking peptide rendered it less useful than previously described plasmin-activatable HSACHV3.


Assuntos
Fator XIa/farmacologia , Hemorragia/prevenção & controle , Hirudinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Trombose/tratamento farmacológico , Albuminas/biossíntese , Albuminas/farmacologia , Animais , Fator XIa/biossíntese , Hirudinas/biossíntese , Camundongos , Modelos Animais
8.
Blood ; 127(1): 132-8, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26500340

RESUMO

Patients with immune thrombocytopenia (ITP) commonly have antiplatelet antibodies that cause thrombocytopenia through Fcγ receptors (FcγRs). Antibodies specific for FcγRs, designed to inhibit antibody-FcγR interaction, had been shown to improve ITP in refractory human patients. However, the development of such FcγR-specific antibodies has stalled because of adverse events, a phenomenon recapitulated in mouse models. One hypothesis behind these adverse events involved the function of the Fc region of the antibody, which engages FcγRs, leading to inflammatory responses. Unfortunately, inhibition of Fc function by deglycosylation failed to prevent this inflammatory response. In this work, we hypothesize that the bivalent antigen-binding fragment regions of immunoglobulin G are sufficient to trigger adverse events and have reasoned that designing a monovalent targeting strategy could circumvent the inflammatory response. To this end, we generated a fusion protein comprising a monovalent human FcγRIIIA-specific antibody linked in tandem to human serum albumin, which retained FcγR-binding activity in vitro. To evaluate clinically relevant in vivo FcγR-blocking function and inflammatory effects, we generated a murine version targeting the murine FcγRIII linked to murine albumin in a passive murine ITP model. Monovalent blocking of FcγR function dramatically inhibited antibody-dependent murine ITP and successfully circumvented the inflammatory response as assessed by changes in body temperature, basophil activation, and basophil depletion. Consistent with our hypothesis, in vivo cross-linking of the fusion protein induced these inflammatory effects, recapitulating the adverse events of the parent antibody. Thus, monovalent blocking of FcγR function demonstrates a proof of concept to successfully treat FcγR-mediated autoimmune diseases.


Assuntos
Albuminas/imunologia , Anticorpos Monoclonais/farmacologia , Fragmentos Fc das Imunoglobulinas/imunologia , Púrpura Trombocitopênica Idiopática/terapia , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/imunologia , Albuminas/metabolismo , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células Cultivadas , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Púrpura Trombocitopênica Idiopática/imunologia , Receptores de IgG/metabolismo
9.
J Immunol ; 196(8): 3331-40, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944929

RESUMO

Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions.


Assuntos
Anticorpos Bloqueadores/farmacologia , Receptores de Hialuronatos/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Receptores de Complemento/imunologia , Receptores de IgG/imunologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular , Eritrócitos/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Inflamação/prevenção & controle , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Zimosan/imunologia
10.
Transfus Apher Sci ; 57(6): 768-772, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30266202

RESUMO

BACKGROUND: Plasma obtained via whole blood (WB) donation may be used either for transfusion or as recovered plasma (RP) for pooling and fractionation. In Canada, transfusable plasma must be processed within 24 h of phlebotomy, while the limit for RP processing is 72 h. We assessed the quality of RP produced by two WB processing methods and as a function of processing time. STUDY DESIGN AND METHODS: RP units produced via the buffy coat method (BCM, n = 26) or whole blood filtration (WBF, n = 52) were tested for: the activities of prothrombin, fibrinogen, von Willebrand Factor (VWF), FV, FVII, and FVIII; the prothrombin time (PT); and total protein and IgG concentration. WBF RP units were evenly divided between those processed <48 h of phlebotomy (shorter-processed) or 48-72 h after phlebotomy (longer-processed). RESULTS: WBF-RP did not differ significantly from BCM-RP in any tested parameter except for FV and FVIII, which exhibited mean reductions of 10.2% and 20%, respectively. Longer-processed WBF-RP did not differ significantly from shorter-processed WBF-RP in any tested parameter except for FVIII activity and IgG concentration, which exhibited mean reductions of 30.1% and 14.3%, respectively. CONCLUSIONS: Canadian RP is currently fractionated into IgG, albumin, fibrinogen, and FVII/VWF concentrates irrespective of its method or time of processing. Our results supported the current approach of fractionating both BCM- and WBF-derived RP, but suggest that greater yields of immunoglobulin and FVIII/VWF products could be obtained if the maximum processing time was reduced from 72 h to 48 h.


Assuntos
Coagulação Sanguínea/fisiologia , Fator VIII/metabolismo , Imunoglobulina G/sangue , Plasma/metabolismo , Buffy Coat , Remoção de Componentes Sanguíneos , Feminino , Hemofiltração , Humanos , Masculino , Fatores de Tempo , Fator de von Willebrand/metabolismo
11.
Transfusion ; 57(3): 661-673, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28019031

RESUMO

BACKGROUND: Pathogen reduction treatment using riboflavin and ultraviolet light illumination (Mirasol) effectively reduces the risk of transfusion-transmitted infections. This treatment is currently licensed for only platelets and plasma products, while its application to whole blood (WB) to generate pathogen-inactivated red blood cells (RBCs) is under development. RBC storage lesion, constituting numerous morphologic and biochemical changes, influences RBC quality and limits shelf life. Stored RBCs further show enhanced susceptibility to RBC programmed cell death (eryptosis) characterized by increased cytosolic Ca2+ -provoked membrane phosphatidylserine (PS) externalization. STUDY DESIGN AND METHODS: Using a "pool-and-split" approach, we examined multiple variables of RBC storage lesion and eryptosis in RBC units, derived from Mirasol-treated or untreated WB, after 4 to 42 days of storage, under blood bank conditions. RESULTS: In comparison to untreated RBC units, Mirasol treatment significantly altered membrane microvesiculation, supernatant hemoglobin, osmotic fragility, and intracellular adenosine triphosphate levels but did not influence membrane CD47 expression and 2,3-diphosphoglycerate levels. Mirasol-treated RBCs showed significantly higher PS exposure after 42, but not after not more than 21, days of storage, which was accompanied by enhanced cytosolic Ca2+ activity, ceramide abundance, and oxidative stress, but not p38 kinase activation. Mirasol treatment significantly augmented PS exposure, Ca2+ entry, and protein kinase C activation after energy depletion, a pathophysiologic cell stressor. Mirasol-treated RBCs were, however, more resistant to cell shrinkage. CONCLUSIONS: Prolonged storage of Mirasol-treated RBCs significantly increases the proportion of eryptotic RBCs, while even short-term storage enhances the susceptibility of RBCs to stress-induced eryptosis, which could reduce posttransfusion RBC recovery in patients.


Assuntos
Preservação de Sangue , Desinfecção , Eriptose , Eritrócitos/metabolismo , Riboflavina , Raios Ultravioleta/efeitos adversos , Eriptose/efeitos dos fármacos , Eriptose/efeitos da radiação , Eritrócitos/patologia , Feminino , Humanos , Masculino , Riboflavina/efeitos adversos , Riboflavina/farmacologia , Fatores de Tempo
12.
J Cell Mol Med ; 20(4): 710-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26781477

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of µ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.


Assuntos
Eritrócitos/efeitos dos fármacos , Infecções por Pseudomonas/sangue , Pseudomonas aeruginosa/patogenicidade , Piocianina/farmacologia , Sepse/sangue , Fatores de Virulência/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Coagulação Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Calpaína/metabolismo , Cátions Bivalentes , Ceramidas/metabolismo , Eriptose/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Fibrina/agonistas , Fibrina/biossíntese , Humanos , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Fosfatidilserinas/metabolismo , Protrombina/agonistas , Protrombina/biossíntese , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/fisiologia , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Sepse/microbiologia , Sepse/patologia
13.
Biochem Biophys Res Commun ; 470(3): 710-713, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26797521

RESUMO

The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin.


Assuntos
Coagulação Sanguínea/fisiologia , Fator VIIa/antagonistas & inibidores , Fator VIIa/metabolismo , Tromboplastina/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Variação Genética/genética , Humanos , Cinética , Relação Estrutura-Atividade
14.
Transfusion ; 55(4): 815-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25355434

RESUMO

BACKGROUND: Pathogen inactivation (PI) technologies are currently licensed for use with platelet (PLT) and plasma components. Treatment of whole blood (WB) would be of benefit to the blood banking community by saving time and costs compared to individual component treatment. However, no paired, pool-and-split study directly assessing the impact of WB PI on the subsequently produced components has yet been reported. STUDY DESIGN AND METHODS: In a "pool-and-split" study, WB either was treated with riboflavin and ultraviolet (UV) light or was kept untreated as control. The buffy coat (BC) method produced plasma, PLT, and red blood cell (RBC) components. PLT units arising from the untreated WB study arm were treated with riboflavin and UV light on day of production and compared to PLT concentrates (PCs) produced from the treated WB units. A panel of common in vitro variables for the three types of components was used to monitor quality throughout their respective storage periods. RESULTS: PCs derived from the WB PI treatment were of significantly better quality than treated PLT components for most variables. RBCs produced from the WB treatment deteriorated earlier during storage than untreated units. Plasma components showed a 3% to 44% loss in activity for several clotting factors. CONCLUSION: Treatment of WB with riboflavin and UV before production of components by the BC method shows a negative impact on all three blood components. PLT units produced from PI-treated WB exhibited less damage compared to PLT component treatment.


Assuntos
Buffy Coat/química , Buffy Coat/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Segurança do Sangue/métodos , Sangue/efeitos dos fármacos , Sangue/efeitos da radiação , Riboflavina/farmacologia , Raios Ultravioleta , Trifosfato de Adenosina/sangue , Fatores de Coagulação Sanguínea/análise , Glicemia/análise , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Plaquetas/efeitos da radiação , Preservação de Sangue , Segurança do Sangue/efeitos adversos , Patógenos Transmitidos pelo Sangue/efeitos dos fármacos , Patógenos Transmitidos pelo Sangue/efeitos da radiação , Tamanho Celular , Micropartículas Derivadas de Células , Criopreservação , Índices de Eritrócitos , Humanos , Plasma , Contagem de Plaquetas
15.
Microcirculation ; 21(1): 74-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23941548

RESUMO

OBJECTIVE: To characterize the effect of systemically administered AGP on early leukocyte recruitment in the livers of endotoxemic or septic mice and to determine whether this is influenced by LPS sequestration. METHODS: Endotoxemia was induced in C57Bl/6 mice via intraperitoneal injection of LPS. Sepsis was induced in mice by cecal ligation and perforation. AGP (165 mg/kg) or saline (20 mL/kg) or HAS (200 mg/kg) was administered immediately after surgery or LPS injection and the hepatic microcirculation was examined by intravital microscopy at four hour. RESULTS: Leukocyte adhesion in the PSV was reduced by treatment with AGP in mice subjected to either LPS or CLP protocols compared to either saline or HAS treatment. AGP-treated mice also had significantly higher sinusoidal flow in both models. Pre-incubation of LPS with AGP reduced the ability of LPS to recruit leukocytes to the liver microcirculation. CONCLUSIONS: AGP was more effective in limiting hepatic inflammation and maintaining perfusion than saline or HAS, in both endotoxemic and septic mice. AGP sequestration of LPS may contribute to its anti-inflammatory effects.


Assuntos
Endotoxemia , Leucócitos/metabolismo , Lipopolissacarídeos/toxicidade , Fígado , Microcirculação/efeitos dos fármacos , Orosomucoide/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Endotoxemia/fisiopatologia , Humanos , Leucócitos/patologia , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Camundongos , Orosomucoide/metabolismo
16.
Transfusion ; 54(2): 418-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23692473

RESUMO

BACKGROUND: Cryosupernatant plasma (CSP) is used in Canada for plasma exchange in thrombotic thrombocytopenic purpura. The refrigerated storage time for thawed CSP is limited in many areas to not more than 24 hours postthaw. Because large volumes of CSP are needed for plasma exchange, procedural postponement can lead to product wastage. To determine if CSP storage could be extended, we measured coagulation-related activities in CSP thawed and stored at 1 to 6°C for up to 5 days. STUDY DESIGN AND METHODS: Thirty-six CSP units were thawed, refrigerated, and sampled aseptically at 0, 24, 48, and 120 hours postthaw. Clotting factor activities (Factor [F]V, FVII, FVIII, and fibrinogen) and prothrombin time were measured using an automated coagulation analyzer, and von Willebrand factor (vWF) and ADAMTS13 activities using enzyme-linked immunosorbent assay. RESULTS: Fibrinogen, FVIII, and vWF activities were unchanged from thaw values after 120 hours of storage; ADAMTS13, FV, and FVII activities were significantly lower than at thaw, but mean reductions were only -2.6, -7.7, and -12%, respectively. Losses were proportionately greater in the first 24 hours of refrigerated storage. CONCLUSIONS: Extending the refrigerated storage of CSP from 1 to 5 days had little impact on product quality. The retention of more than 97% of initial mean ADAMTS13 activity after 5 days of refrigerated storage suggests that the shelf life of thawed refrigerated CSP could be extended without meaningful losses of its likely most important ingredients. CSP postthaw storage could be aligned to that of refrigerated thawed frozen plasma, currently available for transfusion in some jurisdictions for up to 5 days postthaw.


Assuntos
Bancos de Sangue/normas , Fatores de Coagulação Sanguínea/metabolismo , Preservação de Sangue/métodos , Preservação de Sangue/normas , Troca Plasmática/normas , Púrpura Trombocitopênica Trombótica/terapia , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Criopreservação/métodos , Criopreservação/normas , Fator V/metabolismo , Fator VII/metabolismo , Fator VIII/metabolismo , Fibrinogênio/metabolismo , Humanos , Fatores de Tempo , Fator de von Willebrand/metabolismo
17.
J Biotechnol ; 391: 11-19, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844246

RESUMO

Ecallantide comprises Kunitz Domain 1 of Tissue Factor Pathway Inhibitor, mutated at seven amino acid positions to inhibit plasma kallikrein (PK). It is used to treat acute hereditary angioedema (HAE). We appended hexahistidine tags to the N- or C-terminus of recombinant Ecallantide (rEcall) and expressed and purified the resulting proteins, with or without fusion to human serum albumin (HSA), using Pichia pastoris. The inhibitory constant (Ki) of rEcall-H6 or H6-rEcall for PK was not increased by albumin fusion. When 125I-labelled rEcall proteins were injected intravenously into mice, the area under the clearance curve (AUC) was significantly increased, 3.4- and 3.6-fold, for fusion proteins H6-rEcall-HSA and HSA-rEcall-H6 versus their unfused counterparts but remained 2- to 3-fold less than that of HSA-H6. The terminal half-life of H6-rEcall-HSA and HSA-H6 did not differ, although that of HSA-rEcall-H6 was significantly shorter than either other protein. Receptor Associated Protein (RAP), a Low-density lipoprotein Receptor-related Protein (LRP1) antagonist, competed H6-rEcall-HSA clearance more effectively than intravenous immunoglobulin (IVIg), a neonatal Fc receptor (FcRn) antagonist. HSA fusion decreases rEcall clearance in vivo, but LRP1-mediated clearance remains more important than FcRn-mediated recycling for rEcall fusion proteins. The properties of H6-rEcall-HSA warrant investigation in a murine model of HAE.


Assuntos
Proteínas Recombinantes de Fusão , Animais , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/química , Camundongos , Humanos , Meia-Vida , Calicreína Plasmática/metabolismo , Calicreína Plasmática/genética , Albumina Sérica Humana/química , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Receptores Fc , Antígenos de Histocompatibilidade Classe I
18.
Blood Adv ; 8(8): 1869-1879, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38330193

RESUMO

ABSTRACT: Fc gamma receptor (FcγR) IIIA is an important receptor for immunoglobulin G (IgG) and is involved in immune defense mechanisms as well as tissue destruction in some autoimmune diseases including immune thrombocytopenia (ITP). FcγRIIIA on macrophages can trigger phagocytosis of IgG-sensitized platelets, and prior pilot studies observed blockade of FcγRIIIA increased platelet counts in patients with ITP. Unfortunately, although blockade of FcγRIIIA in patients with ITP increased platelet counts, its engagement by the blocking antibody drove serious adverse inflammatory reactions. These adverse events were postulated to originate from the antibody's Fc and/or bivalent nature. The blockade of human FcγRIIIA in vivo with a monovalent construct lacking an active Fc region has not yet been achieved. To effectively block FcγRIIIA in vivo, we developed a high affinity monovalent single-chain variable fragment (scFv) that can bind and block human FcγRIIIA. This scFv (17C02) was expressed in 3 formats: a monovalent fusion protein with albumin, a 1-armed human IgG1 antibody, and a standard bivalent mouse (IgG2a) antibody. Both monovalent formats were effective in preventing phagocytosis of ITP serum-sensitized human platelets. In vivo studies using FcγR-humanized mice demonstrated that both monovalent therapeutics were also able to increase platelet counts. The monovalent albumin fusion protein did not have adverse event activity as assessed by changes in body temperature, whereas the 1-armed antibody induced some changes in body temperature even though the Fc region function was impaired by the Leu234Ala and Leu235Ala mutations. These data demonstrate that monovalent blockade of human FcγRIIIA in vivo can potentially be a therapeutic strategy for patients with ITP.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Camundongos , Animais , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Receptores de IgG/metabolismo , Modelos Animais de Doenças , Imunoglobulina G/uso terapêutico , Albuminas/uso terapêutico
19.
BMC Biochem ; 14: 31, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24215622

RESUMO

BACKGROUND: Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli. RESULTS: HV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold. CONCLUSIONS: Fusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that seen in HCII 1-75-API M358R fusion proteins. HCII 1-75 was a superior fusion partner, in spite of the greater affinity of the HV3 triskaidecapeptide, manifested both in isolated and API-fused form, for thrombin exosite 1. Our results suggest that HCII 1-75 binds thrombin exosite 1 and orients the attached serpin scaffold for more efficient interaction with the active site of thrombin than the HV3 triskaidecapeptide.


Assuntos
Hirudinas/metabolismo , Serpinas/metabolismo , Trombina/metabolismo , alfa 1-Antitripsina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Hirudinas/química , Hirudinas/genética , Histidina/genética , Histidina/metabolismo , Humanos , Cinética , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteína C/antagonistas & inibidores , Proteína C/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Trombina/antagonistas & inibidores , alfa 1-Antitripsina/genética
20.
BMC Biochem ; 14: 6, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23496873

RESUMO

BACKGROUND: Heparin cofactor II (HCII) is a circulating protease inhibitor, one which contains an N-terminal acidic extension (HCII 1-75) unique within the serpin superfamily. Deletion of HCII 1-75 greatly reduces the ability of glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, and abrogates HCII binding to thrombin exosite 1. While a minor portion of HCII 1-75 can be visualized in a crystallized HCII-thrombin S195A complex, the role of the rest of the extension is not well understood and the affinity of the HCII 1-75 interaction has not been quantitatively characterized. To address these issues, we expressed HCII 1-75 as a small, N-terminally hexahistidine-tagged polypeptide in E. coli. RESULTS: Immobilized purified HCII 1-75 bound active α-thrombin and active-site inhibited FPR-ck- or S195A-thrombin, but not exosite-1-disrupted γT-thrombin, in microtiter plate assays. Biotinylated HCII 1-75 immobilized on streptavidin chips bound α-thrombin and FPR-ck-thrombin with similar KD values of 330-340 nM. HCII 1-75 competed thrombin binding to chip-immobilized HCII 1-75 more effectively than HCII 54-75 but less effectively than the C-terminal dodecapeptide of hirudin (mean Ki values of 2.6, 8.5, and 0.29 µM, respectively). This superiority over HCII 54-75 was also demonstrated in plasma clotting assays and in competing the heparin-catalysed inhibition of thrombin by plasma-derived HCII; HCII 1-53 had no effect in either assay. Molecular modelling of HCII 1-75 correctly predicted those portions of the acidic extension that had been previously visualized in crystal structures, and suggested that an α-helix found between residues 26 and 36 stabilizes one found between residues 61-67. The latter region has been previously shown by deletion mutagenesis and crystallography to play a crucial role in the binding of HCII to thrombin exosite 1. CONCLUSIONS: Assuming that the KD value for HCII 1-75 of 330-340 nM faithfully predicts that of this region in intact HCII, and that 1-75 binding to exosite 1 is GAG-dependent, our results support a model in which thrombin first binds to GAGs, followed by HCII addition to the ternary complex and release of HCII 1-75 for exosite 1 binding and serpin mechanism inhibition. They further suggest that, in isolated or transferred form, the entire HCII 1-75 region is required to ensure maximal binding of thrombin exosite 1.


Assuntos
Cofator II da Heparina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Escherichia coli/metabolismo , Cofator II da Heparina/química , Cofator II da Heparina/genética , Hirudinas/síntese química , Hirudinas/química , Hirudinas/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Serpinas/química , Serpinas/metabolismo , Trombina/química , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA