Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 739, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874886

RESUMO

Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.


Assuntos
Acrilamida , Estresse Oxidativo , Espermatozoides , Testículo , Masculino , Acrilamida/toxicidade , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Humanos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia
2.
Environ Sci Technol ; 57(34): 12602-12619, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581432

RESUMO

As a heterogeneous reproductive disorder, polycystic ovary syndrome (PCOS) can be caused by genetic, diet, and environmental factors. Bisphenol A (BPA) can induce PCOS and nonalcoholic fatty liver disease (NAFLD) due to direct exposure; however, whether these phenotypes persist in future unexposed generations is not currently understood. In a previous study, we observed that transgenerational NAFLD persisted in female medaka for five generations (F4) after exposure to an environmentally relevant concentration (10 µg/L) of BPA. Here, we demonstrate PCOS in the same F4 generation female medaka that developed NAFLD. The ovaries contained immature follicles, restricted follicular progression, and degenerated follicles, which are characteristics of PCOS. Untargeted metabolomic analysis revealed 17 biomarkers in the ovary of BPA lineage fish, whereas transcriptomic analysis revealed 292 genes abnormally expressed, which were similar to human patients with PCOS. Metabolomic-transcriptomic joint pathway analysis revealed activation of the cancerous pathway, arginine-proline metabolism, insulin signaling, AMPK, and HOTAIR regulatory pathways, as well as upstream regulators esr1 and tgf signaling in the ovary. The present results suggest that ancestral BPA exposure can lead to PCOS phenotypes in the subsequent unexposed generations and warrant further investigations into potential health risks in future generations caused by initial exposure to EDCs.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Oryzias , Síndrome do Ovário Policístico , Animais , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Oryzias/fisiologia , Fenótipo
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446079

RESUMO

Bisphenol F (BPF) has been used in the syntheses of polymers, which are widely used in coatings, varnishes, adhesives, and other plastics. During the past decades, BPF contamination in the aquatic environment has dramatically increased due to its release from manmade products. Concerns have driven much attention to whether it may adversely impact aquatic lives or human beings. The present study performed an acute toxic exposure experiment and a 15 d developmental exposure of BPF at environmental concentrations (20, 200, and 2000 ng/L) using Chinese medaka (Oryzias sinensis). In the acute toxic exposure, the LC50 of BPF to Chinese medaka is 87.90 mg/L at 96 h. Developmental exposure induced a significant increase in the frequency of larvae with abnormalities in the 2000 ng/L BPF group compared to the control group. Transcriptomic analysis of the whole larvae revealed 565 up-regulated and 493 down-regulated genes in the 2000 ng/L BPF exposure group. Analysis of gene ontology and KEGG pathways enrichments indicated endocrine disorders to be associated with BPF-induced developmental toxicity. The present results suggest that BPF is developmentally toxic at 2000 ng/L concentration in Chinese medaka and causes endocrine-related aberrations in the transcriptional network of genes.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Compostos Benzidrílicos/toxicidade , Perfilação da Expressão Gênica , Larva/genética , Oryzias/genética , Poluentes Químicos da Água/toxicidade
4.
Gen Comp Endocrinol ; 213: 110-7, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25745814

RESUMO

High temperature treatments induce germ cell loss in gonads of vertebrate animals, including fish. It could be a reliable source for induction of sterility if the treatments led to a permanent loss of germ cells. Here we report that heat treatment at 37 °C for 45-60 days caused a complete loss of germ cells in female Nile tilapia, Oreochromis niloticus, and that sterility was achieved in fish at all stages of their life cycle. Unlike previous observations, germ cells did not repopulate even after returning them to the water at control conditions suggesting permanent depletion of germ cells. Gonadal somatic cells immunopositive for 3ß-hydroxysteroid dehydrogenase (3ß-HSD) were clustered at one end of the germ cell depleted gonads close to the blood vessel. Serum level of testosterone, 11-ketotestosterone, and 17ß-estradiol was significantly decreased in sterile fish compared to control. Body weight of sterile fish was higher than control fish at the end of experiment. Our observations of increased growth and permanent sterilization in the high temperature-treated fish suggest that this method could be an appropriate and eco-friendly tool for inducing sterility in fish with a higher thermal tolerance.


Assuntos
Células Germinativas/metabolismo , Temperatura Alta/efeitos adversos , Infertilidade/etiologia , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Ciclídeos/metabolismo , Estradiol/sangue , Feminino , Células Germinativas/citologia , Infertilidade/metabolismo , Estágios do Ciclo de Vida/fisiologia , Testosterona/análogos & derivados , Testosterona/sangue
5.
Res Sq ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39070641

RESUMO

The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish that were not directly exposed, but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% were downregulated, and 20% were upregulated. Of all DEGs, 52.31% of DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared the majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.

6.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826193

RESUMO

The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish who were not directly exposed but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% DEGs were downregulated and 20% DEGs were upregulated. Off all DEGs, 52.31% DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.

7.
Sci Total Environ ; 856(Pt 1): 159067, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174697

RESUMO

Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Oryzias , Animais , Masculino , Feminino , Compostos Benzidrílicos/toxicidade
8.
J Xenobiot ; 13(3): 500-508, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37754844

RESUMO

The use of glyphosate-based herbicides is increasing yearly to keep up with the growing demands of the agriculture world. Although glyphosate-based herbicides target the enzymatic pathway in plants, the effects on the endocrine systems of vertebrate organisms, mainly fish, are widely unknown. Many studies with glyphosate used high-exposure concentrations (mg/L), and the effect of environmentally relevant or lower concentrations has not been clearly understood. Therefore, the present study examined the effects of very low, environmentally relevant, and high concentrations of glyphosate exposure on embryo development and the thyroid system of Japanese medaka (Oryzias latipes). The Hd-rR medaka embryos were exposed to Roundup containing 0.05, 0.5, 5, 10, and 20 mg/L glyphosate (glyphosate acid equivalent) from the 8 h post-fertilization stage through the 14-day post-fertilization stage. Phenotypes observed include delayed hatching, increased developmental deformities, abnormal growth, and embryo mortality. The lowest concentration of glyphosate (0.05 mg/L) and the highest concentration (20 mg/L) induced similar phenotypes in embryos and fry. A significant decrease in mRNA levels for acetylcholinesterase (ache) and thyroid hormone receptor alpha (thrα) was found in the fry exposed to 0.05 mg/L and 20 mg/L glyphosate. The present results demonstrated that exposure to glyphosate formulation, at a concentration of 0.05 mg/L, can affect the early development of medaka larvae and the thyroid pathway, suggesting a link between thyroid functional changes and developmental alteration; they also showed that glyphosate can be toxic to fish at this concentration.

9.
Epigenetics ; 18(1): 2192326, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945831

RESUMO

The CRISPR/dCas9-based epigenome editing technique has driven much attention. Fused with a catalytic domain from Dnmt or Tet protein, the CRISPR/dCas9-DnmtCD or -TetCD systems possess the targeted DNA methylation editing ability and have established a series of in vitro and in vivo disease models. However, no publication has been reported on zebrafish (Danio rerio), an important animal model in biomedicine. The present study demonstrated that CRISPR/dCas9-Dnmt7 and -Tet2 catalytic domain fusions could site-specifically edit genomic DNA methylation in vivo in zebrafish and may serve as an efficient toolkit for DNA methylation editing in the zebrafish model.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Animais , Edição de Genes/métodos , Peixe-Zebra/genética , Epigenoma
10.
J Xenobiot ; 13(2): 237-251, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367494

RESUMO

With the legalization of marijuana smoking in several states of the United States and many other countries for medicinal and recreational use, the possibility of its release into the environment cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored on a regular basis, and their stability in the environment is not well understood. Laboratory studies have linked delta 9-tetrahydrocannabinol (Δ9-THC) exposure with behavioral abnormalities in some fish species; however, their effects on endocrine organs are less understood. To understand the effects of THC on the brain and gonads, we exposed adult medaka (Oryzias latipes, Hd-rR strain, both male and female) to 50 ug/L THC for 21 days spanning their complete spermatogenic and oogenic cycles. We examined transcriptional responses of the brain and gonads (testis and ovary) to Δ9-THC, particularly molecular pathways associated with behavioral and reproductive functions. The Δ9-THC effects were more profound in males than females. The Δ9-THC-induced differential expression pattern of genes in the brain of the male fish suggested pathways to neurodegenerative diseases and pathways to reproductive impairment in the testis. The present results provide insights into endocrine disruption in aquatic organisms due to environmental cannabinoid compounds.

11.
Environ Toxicol Pharmacol ; 102: 104250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595935

RESUMO

Fish inhabiting various trophic levels are affected differently as the presence of microplastic (MP) in the water column and their ingestion by fish varies. Walking catfish (Clarias batrachus) inhabits the bottom of the water bodies. To understand the effects of MP, we exposed C. batrachus to two types of MP - polyethylene terephthalate (PET) and low-density polyethylene (LDPE) for 60 days. After exposure, hematological indices, mainly red blood cells and hemoglobin levels decreased, and white blood cells increased significantly compared to the control group (p < 0.05). A significant increase in the levels of blood urea and glucose was observed, and serum glutamic pyruvate transaminase and serum glutamyl oxaloacetic transaminase activity remained elevated (p < 0.05). Histopathological examination of the liver, kidney, intestine, and gills showed morphological alterations. Moreover, MP exposure caused growth retardation (p < 0.05) in C. batrachus. Widespread pollution of water bodies by MP may impose serious ecological risks to bottom-feeding fish in Bangladesh.


Assuntos
Peixes-Gato , Polietileno , Animais , Polietilenotereftalatos , Plásticos , Microplásticos , Alanina Transaminase
12.
Toxicol Rep ; 9: 1233-1239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518489

RESUMO

Thiamethoxam (THM), a type III systemic neonicotinoid insecticide, is widely used in agriculture in many countries, including Bangladesh. THM can enter the aquatic systems through the runoff, spray-drift and groundwater leaching and can affect the aquatic organisms, including fish. Current environmental levels of THM in Bangladesh waters are variable. However, the presence of this chemical in the aquatic environment and its possible effects on the fish inhabiting those water bodies is concerning. To understand the effects of environmental THM on the development of embryo and larvae, the present study used banded gourami (Trichogaster fasciata), a freshwater fish species distributed in different Asian countries, including Bangladesh. In laboratory setting, fertilized eggs (n = 100) and one-day-old banded gourami larvae (n = 100) were exposed to six concentrations of THM (0, 0.02, 0.2, 2, 20, 200 mg/L) in three replicates, in which three concentrations were within the environmentally relevant levels. Hatching rate, incubation period, mortality, and malformations of embryo and larvae were observed. The hatching success and survival of embryo and larvae significantly decreased with increasing THM concentrations. The 24-h LC50 of THM for the embryo was 4.24 mg/L. The 24-h, 48-h, 72-h, and 96-h LC50 values of THM for one-day-old larvae were 12.20, 3.80, 0.78, and 0.27 mg/L, respectively. Overall developmental malformations included lordosis, notochord abnormality, yolk-sac edema, dark brown yolk sac, hemorrhage, and irregular caudal fin. These abnormalities in embryos were common across all the concentrations of THM applied. The results of the present study suggest that environmentally relevant concentrations of THM can induce developmental defects in the embryo and larvae of banded gourami.

13.
Plant Direct ; 6(5): e400, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582629

RESUMO

MicroRNAs (miRNAs) play an important role in growth, development, stress resilience, and epigenetic modifications of plants. However, the effect of calcium (Ca2+) deficiency on miRNA expression in the orphan crop tef (Eragrostis tef) remains unknown. In this study, we analyzed expression of miRNAs in roots and shoots of tef in response to Ca2+ treatment. miRNA-seq followed by bioinformatic analysis allowed us to identify a large number of small RNAs (sRNAs) ranging from 17 to 35 nt in length. A total of 1380 miRNAs were identified in tef experiencing long-term Ca2+ deficiency while 1495 miRNAs were detected in control plants. Among the miRNAs identified in this study, 161 miRNAs were similar with those previously characterized in other plant species and 348 miRNAs were novel, while the remaining miRNAs were uncharacterized. Putative target genes and their functions were predicted for all the known and novel miRNAs that we identified. Based on gene ontology (GO) analysis, the predicted target genes are known to have various biological and molecular functions including calcium uptake and transport. Pairwise comparison of differentially expressed miRNAs revealed that some miRNAs were specifically enriched in roots or shoots of low Ca2+-treated plants. Further characterization of the miRNAs and their targets identified in this study may help in understanding Ca2+ deficiency responses in tef and related orphan crops.

14.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360315

RESUMO

Systems genetics is key for integrating a large number of variants associated with diseases. Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK disease phenotypes, viz., myocardial infarction, renal failure and prostate cancer. We sought to ask whether or not any DEGs harbor pathogenic variants common in these conditions, attempt to bridge the gap in finding characteristic biomarkers and discuss the role of long noncoding RNAs (lncRNAs) in the biogenesis of VK deficiencies.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Deficiência de Vitamina K , Humanos , Masculino , Vitamina K , RNA Longo não Codificante/genética , Biomarcadores
15.
Environ Toxicol Pharmacol ; 81: 103497, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32950715

RESUMO

Bisphenol-A is one of the most studied endocrine-chemicals, which is widely used all over the world in plastic manufacture. Because of its extensive use, it has become one of the most abundant chemical environmental pollutants, especially in aquatic environments. BPA is known to affect fish reproduction via estrogen receptors but many studies advocate that BPA affects almost all aspects of fish physiology. The possible modes of action include genomic, as well as and non-genomic mechanisms, estrogen, androgen, and thyroid receptor-mediated effects. Due to the high detrimental effects of BPA, various analogs of BPA are being used as alternatives. Recent evidence suggests that the analogs of BPA have similar modes of action, with accompanying effects on fish physiology and reproduction. In this review, a detailed comparison of effects produced by BPA and analogs and their mode of action is discussed.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Peixes/fisiologia , Fenóis/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Aprendizagem/efeitos dos fármacos , Fenóis/análise , Glândula Tireoide/efeitos dos fármacos
16.
Epigenetics ; 15(5): 483-498, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31851575

RESUMO

Primordial germ cells (PGCs) are precursors of eggs and sperm. How the PGCs epigenetically reprogram during early embryonic development in fish is currently unknown. Here we generated a series of PGC methylomes using whole genome bisulfite sequencing across key stages from 8 days post fertilization (dpf) to 25 dpf coinciding with germ cell sex determination and gonadal sex differentiation in medaka (Oryzias latipes) to elucidate the dynamics of DNA methylation during epigenetic reprogramming in germ cells. Our high-resolution DNA methylome maps show a global demethylation taking place in medaka PGCs in a two-step strategy. The first step occurs between the blastula and 8-dpf stages, and the second step occurs between the 10-dpf and 12-dpf stages. Both demethylation processes are global, except for CGI promoters which remain hypomethylated throughout the stage of PGC specification. De novo methylation proceeded at 25-dpf stage with the process in male germ cells superseding female germ cells. Gene expression analysis showed that tet2 maintains high levels of expression during the demethylation stage, while dnmt3ba expression increases during the de novo methylation stage during sexual fate determination in germ cells. The present results suggest that medaka PGCs undergo a bi-phasic epigenetic reprogramming process. Global erasure of DNA methylation marks peaks at 15-dpf and de novo methylation in male germ cells takes precedence over female germ cells at 25 dpf. Results also provide important insights into the developmental window of susceptibility to environmental stressors for multi- and trans-generational health outcomes in fish.


Assuntos
Reprogramação Celular , Metilação de DNA , Epigênese Genética , Células Germinativas/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gametogênese , Células Germinativas/citologia , Oryzias , Regiões Promotoras Genéticas , DNA Metiltransferase 3B
17.
Epigenetics ; 14(6): 611-622, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31010368

RESUMO

Post-fertilization epigenome reprogramming erases epigenetic marks transmitted through gametes and establishes new marks during mid-blastula stages. The mouse embryo undergoes dynamic DNA methylation reprogramming after fertilization, while in zebrafish, the paternal DNA methylation pattern is maintained throughout the early embryogenesis and the maternal genome is reprogrammed in a pattern similar to that of sperm during the mid-blastula transition. Here, we show DNA methylation dynamics in medaka embryos, the biomedical model fish, during epigenetic reprogramming of embryonic genome. The sperm genome was hypermethylated and the oocyte genome hypomethylated prior to fertilization. After fertilization, the methylation marks of sperm genome were erased within the first cell cycle and embryonic genome remained hypomethylated from the zygote until 16-cell stage. The DNA methylation level gradually increased from 16-cell stage through the gastrula. The 5-hydroxymethylation (5hmC) levels showed an opposite pattern to DNA methylation (5-mC). The mRNA levels for DNA methyltransferase (DNMT) 1 remained high in oocytes and maintained the same level through late blastula stage and was reduced thereafter. DNMT3BB.1 mRNA levels increased prior to remethylation. The mRNA levels for ten-eleven translocation methylcytosine dioxygenases (TET2 & TET3) were detected in sperm and embryos at cleavage stages, whereas TET1 and TET3 mRNAs decreased during gastrulation. The pattern of genome methylation in medaka was identical to mammalian genome methylation but not to zebrafish. The present study suggests that a medaka embryo resets its DNA methylation pattern by active demethylation and by a gradual remethylation similar to mammals.


Assuntos
Reprogramação Celular/genética , Metilação de DNA , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Oryzias/genética , 5-Metilcitosina/metabolismo , Animais , Dioxigenases/genética , Dioxigenases/metabolismo , Embrião não Mamífero/citologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Genoma , Metiltransferases/genética , Metiltransferases/metabolismo
18.
Zoolog Sci ; 23(1): 65-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16547407

RESUMO

The honeycomb grouper, Epinephelus merra, is a protogynous hermaphrodite fish. Sex steroid hormones play key roles in sex change of this species. A significant drop in endogenous estradiol-17beta (E2) levels alone triggers female-to-male sex change, and the subsequent elevation of 11-ketotestosterone (11KT) levels correlates with the progression of spermatogenesis. To elucidate the role of an androgen in sex change, we attempted to induce female-to-male sex change by exogenous 11KT treatments. The 75-day 11KT treatment caused 100% masculinization of pre-spawning females. Ovaries of the control (vehicle-treated) fish had oocytes at various stages of oogenesis, while the gonads of the 11KT-treated fish had transformed into testes; these contained spermatogenic germ cells at various stages, including an accumulation of spermatozoa in the sperm duct. In the sex-changed fish, plasma levels of E2 were significantly low, while both testosterone (T) and 11KT were significantly increased. Our results suggest that 11KT plays an important role in sex change in the honeycomb grouper. Whether the mechanism of 11KT-induced female-to-male sex change acts through direct stimulation of spermatogenesis in the ovary or via the inhibition of estrogen synthesis remains to be clarified.


Assuntos
Androgênios/metabolismo , Estradiol/metabolismo , Organismos Hermafroditas , Perciformes/fisiologia , Processos de Determinação Sexual , Testosterona/análogos & derivados , Androgênios/farmacologia , Animais , Estradiol/sangue , Estradiol/farmacologia , Feminino , Fertilidade/fisiologia , Masculino , Especificidade da Espécie , Espermatogênese , Testosterona/sangue , Testosterona/metabolismo , Testosterona/farmacologia
19.
Zoolog Sci ; 22(12): 1331-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16462105

RESUMO

Seasonal variation in the expression of five subtypes of gonadotropin-releasing hormone receptor (GnRH-R) genes, designated as msGnRH-R1, -R2, -R3, -R4, and -R5, was examined in the brain of masu salmon (Oncorhynchus masou). In addition, responses of these genes to GnRH were examined in a GnRH analog (GnRHa) implantation experiment. Brain samples were collected one week after the implantation every month from immaturity through spawning. The absolute amount of GnRH-R mRNA in single forebrains was determined by real-time PCR assays. Among the five genes, R4 and R5 were dominantly expressed in both sexes. R1, R4, and R5 mRNAs showed similar changes throughout the experimental period in both sexes. Levels tended to be high in winter and low in the pre-spawning season, followed by elevations in the spawning period. The mRNA levels had weak to moderate negative correlations with the plasma level of estradiol-17beta (E2) in females. The effects of GnRHa on msGnRH-R mRNAs were not apparent for all the subtypes. These results indicate that the msGnRH-R1, -R4, and -R5 genes are synchronously expressed during sexual maturation. There was a trend toward decreased levels of their expression prior to the spawning period and then increased levels at spawning, possibly causing GnRH target neurons to sensitize to a GnRH stimulus. Furthermore, E2 may be involved in msGnRH-R gene expression in the brain of female masu salmon during sexual maturation.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Oncorhynchus/crescimento & desenvolvimento , Oncorhynchus/metabolismo , Receptores LHRH/genética , Estações do Ano , Maturidade Sexual/fisiologia , Envelhecimento/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , RNA Mensageiro/metabolismo , Receptores LHRH/classificação , Receptores LHRH/metabolismo , Esteroides/sangue
20.
Fish Physiol Biochem ; 31(2-3): 117-22, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20035444

RESUMO

Gonadal differentiation can take many forms in fish, ranging from gonochorism, where individuals directly develop as male or female and finally possess only testis or ovaries at sexual maturation, to hermaphroditism where the same individuals can produce mature male and female gametes at some time in their lives. Hermaphrodite fish are, thus, an excellent model for studying the plasticity of sex determination and differentiation in vertebrates. We have shown that sex steroids play a principal role in sex differentiation and sex change in fish. Our laboratory implements several fish models that undergo sex change from female to male or male to female or in both directions. In this review, we will briefly discuss recent advances in our understanding of the mechanism of sex change in coral reef fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA