Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 180(2): 348-358.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31883796

RESUMO

Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Caulobacter crescentus/ultraestrutura , Microscopia Crioeletrônica/métodos , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia/métodos
2.
Nature ; 630(8015): 230-236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811725

RESUMO

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.


Assuntos
Amônia , Organismos Aquáticos , Archaea , Membrana Celular , Amônia/química , Amônia/metabolismo , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Organismos Aquáticos/ultraestrutura , Archaea/química , Archaea/metabolismo , Archaea/ultraestrutura , Cátions/química , Cátions/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Oxirredução , Polissacarídeos/metabolismo , Polissacarídeos/química
3.
Proc Natl Acad Sci U S A ; 120(16): e2215808120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043530

RESUMO

Deinococcus radiodurans is an atypical diderm bacterium with a remarkable ability to tolerate various environmental stresses, due in part to its complex cell envelope encapsulated within a hyperstable surface layer (S-layer). Despite decades of research on this cell envelope, atomic structural details of the S-layer have remained obscure. In this study, we report the electron cryomicroscopy structure of the D. radiodurans S-layer, showing how it is formed by the Hexagonally Packed Intermediate-layer (HPI) protein arranged in a planar hexagonal lattice. The HPI protein forms an array of immunoglobulin-like folds within the S-layer, with each monomer extending into the adjacent hexamer, resulting in a highly interconnected, stable, sheet-like arrangement. Using electron cryotomography and subtomogram averaging from focused ion beam-milled D. radiodurans cells, we have obtained a structure of the cellular S-layer, showing how this HPI S-layer coats native membranes on the surface of cells. Our S-layer structure from the diderm bacterium D. radiodurans shows similarities to immunoglobulin-like domain-containing S-layers from monoderm bacteria and archaea, highlighting common features in cell surface organization across different domains of life, with connotations on the evolution of immunoglobulin-based molecular recognition systems in eukaryotes.


Assuntos
Proteínas de Bactérias , Deinococcus , Proteínas de Bactérias/metabolismo , Deinococcus/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Imunoglobulinas/metabolismo
4.
PLoS Pathog ; 19(4): e1011177, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058467

RESUMO

Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor ß-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.


Assuntos
Fímbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fímbrias Bacterianas/metabolismo , Biofilmes , Adesinas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Fímbrias/metabolismo
5.
Biochem J ; 481(4): 245-263, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38358118

RESUMO

Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.


Assuntos
Bactérias , Biofilmes , Matriz Extracelular/metabolismo , Polímeros/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(33): e2203156119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943982

RESUMO

Deinococcus radiodurans is a phylogenetically deep-branching extremophilic bacterium that is remarkably tolerant to numerous environmental stresses, including large doses of ultraviolet (UV) radiation and extreme temperatures. It can even survive in outer space for several years. This endurance of D. radiodurans has been partly ascribed to its atypical cell envelope comprising an inner membrane, a large periplasmic space with a thick peptidoglycan (PG) layer, and an outer membrane (OM) covered by a surface layer (S-layer). Despite intense research, molecular principles governing envelope organization and OM stabilization are unclear in D. radiodurans and related bacteria. Here, we report a electron cryomicroscopy (cryo-EM) structure of the abundant D. radiodurans OM protein SlpA, showing how its C-terminal segment forms homotrimers of 30-stranded ß-barrels in the OM, whereas its N-terminal segment forms long, homotrimeric coiled coils linking the OM to the PG layer via S-layer homology (SLH) domains. Furthermore, using protein structure prediction and sequence-based bioinformatic analysis, we show that SlpA-like putative OM-PG connector proteins are widespread in phylogenetically deep-branching Gram-negative bacteria. Finally, combining our atomic structures with fluorescence and electron microscopy of cell envelopes of wild-type and mutant bacterial strains, we report a model for the cell surface of D. radiodurans. Our results will have important implications for understanding the cell surface organization and hyperstability of D. radiodurans and related bacteria and the evolutionary transition between Gram-negative and Gram-positive bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias , Parede Celular , Deinococcus , Membrana Externa Bacteriana/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Parede Celular/química , Microscopia Crioeletrônica , Deinococcus/química , Deinococcus/classificação , Peptidoglicano/química , Filogenia , Domínios Proteicos
7.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34321357

RESUMO

Many bacteria, including the major human pathogen Pseudomonas aeruginosa, are naturally found in multicellular, antibiotic-tolerant biofilm communities, in which cells are embedded in an extracellular matrix of polymeric molecules. Cell-cell interactions within P. aeruginosa biofilms are mediated by CdrA, a large, membrane-associated adhesin present in the extracellular matrix of biofilms, regulated by the cytoplasmic concentration of cyclic diguanylate. Here, using electron cryotomography of focused ion beam-milled specimens, we report the architecture of CdrA molecules in the extracellular matrix of P. aeruginosa biofilms at intact cell-cell junctions. Combining our in situ observations at cell-cell junctions with biochemistry, native mass spectrometry, and cellular imaging, we demonstrate that CdrA forms an extended structure that projects from the outer membrane to tether cells together via polysaccharide binding partners. We go on to show the functional importance of CdrA using custom single-domain antibody (nanobody) binders. Nanobodies targeting the tip of functional cell-surface CdrA molecules could be used to inhibit bacterial biofilm formation or disrupt preexisting biofilms in conjunction with bactericidal antibiotics. These results reveal a functional mechanism for cell-cell interactions within bacterial biofilms and highlight the promise of using inhibitors targeting biofilm cell-cell junctions to prevent or treat problematic, chronic bacterial infections.


Assuntos
Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Adesinas Bacterianas/genética , Aderência Bacteriana , Membrana Celular , Matriz Extracelular , Regulação Bacteriana da Expressão Gênica , Anticorpos de Domínio Único
8.
Proc Natl Acad Sci U S A ; 117(9): 4724-4731, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071243

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is a major cause of antibiotic-tolerant infections in humans. P. aeruginosa evades antibiotics in bacterial biofilms by up-regulating expression of a symbiotic filamentous inoviral prophage, Pf4. We investigated the mechanism of phage-mediated antibiotic tolerance using biochemical reconstitution combined with structural biology and high-resolution cellular imaging. We resolved electron cryomicroscopy atomic structures of Pf4 with and without its linear single-stranded DNA genome, and studied Pf4 assembly into liquid crystalline droplets using optical microscopy and electron cryotomography. By biochemically replicating conditions necessary for antibiotic protection, we found that phage liquid crystalline droplets form phase-separated occlusive compartments around rod-shaped bacteria leading to increased bacterial survival. Encapsulation by these compartments was observed even when inanimate colloidal rods were used to mimic rod-shaped bacteria, suggesting that shape and size complementarity profoundly influences the process. Filamentous inoviruses are pervasive across prokaryotes, and in particular, several Gram-negative bacterial pathogens including Neisseria meningitidis, Vibrio cholerae, and Salmonella enterica harbor these prophages. We propose that biophysical occlusion mediated by secreted filamentous molecules such as Pf4 may be a general strategy of bacterial survival in harsh environments.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , DNA Viral/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Capsídeo , Doenças Transmissíveis , Microscopia Crioeletrônica , Farmacorresistência Bacteriana/genética , Genoma Viral , Inovirus/genética , Inovirus/fisiologia , Modelos Moleculares , Neisseria meningitidis , Prófagos/genética , Prófagos/fisiologia , Salmonella enterica , Vibrio cholerae
9.
Nat Methods ; 20(2): 183-184, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36690740
10.
Nature ; 523(7558): 106-10, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25915019

RESUMO

Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.


Assuntos
Actinas/química , Actinas/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/química , Modelos Moleculares , Plasmídeos/metabolismo , Fuso Acromático , Actinas/metabolismo , Adenilil Imidodifosfato/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Fuso Acromático/química , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 114(29): E5950-E5958, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673988

RESUMO

Microtubules, the dynamic, yet stiff hollow tubes built from αß-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.


Assuntos
Proteínas de Bactérias/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Verrucomicrobia/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Microtúbulos/química , Verrucomicrobia/citologia , Verrucomicrobia/metabolismo
13.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31061167

RESUMO

Adhesion allows microbes to colonize surfaces and is the first stage in biofilm formation. Stable attachment of the freshwater alphaproteobacterium Caulobacter crescentus to surfaces requires an adhesive polysaccharide called holdfast, which is synthesized at a specific cell pole and ultimately found at the tip of cylindrical extensions of the cell envelope called stalks. Secretion and anchoring of holdfast to the cell surface are governed by proteins HfsDAB and HfaABD, respectively. The arrangement and organization of these proteins with respect to each other and the cell envelope, and the mechanism by which the holdfast is anchored on cells, are unknown. In this study, we have imaged a series of C. crescentus mutants using electron cryotomography, revealing the architecture and arrangement of the molecular machinery involved in holdfast anchoring in cells. We found that the holdfast is anchored to cells by a defined complex made up of the HfaABD proteins and that the HfsDAB secretion proteins are essential for proper assembly and localization of the HfaABD anchor. Subtomogram averaging of cell stalk tips showed that the HfaABD complex spans the outer membrane. The anchor protein HfaB is the major component of the anchor complex located on the periplasmic side of the outer membrane, while HfaA and HfaD are located on the cell surface. HfaB is the critical component of the complex, without which no HfaABD complex was observed in cells. These results allow us to propose a working model of holdfast anchoring, laying the groundwork for further structural and cell biological investigations.IMPORTANCE Adhesion and biofilm formation are fundamental processes that accompany bacterial colonization of surfaces, which are of critical importance in many infections. Caulobacter crescentus biofilm formation proceeds via irreversible adhesion mediated by a polar polysaccharide called holdfast. Mechanistic and structural details of how the holdfast is secreted and anchored on cells are still lacking. Here, we have assigned the location and described the arrangement of the holdfast anchor complex. This work increases our knowledge of the relatively underexplored field of polysaccharide-mediated adhesion by identifying structural elements that anchor polysaccharides to the cell envelope, which is important in a variety of bacterial species.


Assuntos
Aderência Bacteriana/fisiologia , Membrana Externa Bacteriana/fisiologia , Caulobacter crescentus/fisiologia , Adesinas Bacterianas/metabolismo , Adesivos/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Polissacarídeos/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(47): E7456-E7463, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821763

RESUMO

Despite the recent rapid progress in cryo-electron microscopy (cryo-EM), there still exist ample opportunities for improvement in sample preparation. Macromolecular complexes may disassociate or adopt nonrandom orientations against the extended air-water interface that exists for a short time before the sample is frozen. We designed a hollow support structure using 3D DNA origami to protect complexes from the detrimental effects of cryo-EM sample preparation. For a first proof-of-principle, we concentrated on the transcription factor p53, which binds to specific DNA sequences on double-stranded DNA. The support structures spontaneously form monolayers of preoriented particles in a thin film of water, and offer advantages in particle picking and sorting. By controlling the position of the binding sequence on a single helix that spans the hollow support structure, we also sought to control the orientation of individual p53 complexes. Although the latter did not yet yield the desired results, the support structures did provide partial information about the relative orientations of individual p53 complexes. We used this information to calculate a tomographic 3D reconstruction, and refined this structure to a final resolution of ∼15 Å. This structure settles an ongoing debate about the symmetry of the p53 tetramer bound to DNA.


Assuntos
Microscopia Crioeletrônica/métodos , DNA/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , DNA/química , Humanos , Imageamento Tridimensional/métodos , Substâncias Macromoleculares/química , Conformação Proteica , Multimerização Proteica , Água
15.
J Struct Biol ; 202(3): 200-209, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410148

RESUMO

Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series. It extends the standard fiducial-based alignment approach in cryoET by introducing quadratic polynomials to model the sample motion. The model can be used during reconstruction to yield a motion-compensated tomogram. We evaluated our method on various datasets with different sample sizes. The results demonstrate that our method could be a useful tool to improve the quality of tomograms and the resolution in cryoET.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Triazóis/química
16.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 973-981, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908328

RESUMO

Electron cryotomography (cryo-ET) is an imaging technique uniquely suited to the study of bacterial ultrastructure and cell biology. Recent years have seen a surge in structural and cell biology research on bacteria using cryo-ET. This research has driven major technical developments in the field, with applications emerging to address a wide range of biological questions. In this review, we explore the diversity of cryo-ET approaches used for structural and cellular microbiology, with a focus on in situ localization and structure determination of macromolecules. The first section describes strategies employed to locate target macromolecules within large cellular volumes. Next, we explore methods to study thick specimens by sample thinning. Finally, we review examples of macromolecular structure determination in a cellular context using cryo-ET. The examples outlined serve as powerful demonstrations of how the cellular location, structure, and function of any bacterial macromolecule of interest can be investigated using cryo-ET.


Assuntos
Bactérias/ultraestrutura , Proteínas de Bactérias/análise , Substâncias Macromoleculares/análise , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Substâncias Macromoleculares/ultraestrutura , Técnicas Microbiológicas
17.
Nature ; 487(7407): 385-9, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22722831

RESUMO

The assembly of retroviruses such as HIV-1 is driven by oligomerization of their major structural protein, Gag. Gag is a multidomain polyprotein including three conserved folded domains: MA (matrix), CA (capsid) and NC (nucleocapsid). Assembly of an infectious virion proceeds in two stages. In the first stage, Gag oligomerization into a hexameric protein lattice leads to the formation of an incomplete, roughly spherical protein shell that buds through the plasma membrane of the infected cell to release an enveloped immature virus particle. In the second stage, cleavage of Gag by the viral protease leads to rearrangement of the particle interior, converting the non-infectious immature virus particle into a mature infectious virion. The immature Gag shell acts as the pivotal intermediate in assembly and is a potential target for anti-retroviral drugs both in inhibiting virus assembly and in disrupting virus maturation. However, detailed structural information on the immature Gag shell has not previously been available. For this reason it is unclear what protein conformations and interfaces mediate the interactions between domains and therefore the assembly of retrovirus particles, and what structural transitions are associated with retrovirus maturation. Here we solve the structure of the immature retroviral Gag shell from Mason-Pfizer monkey virus by combining cryo-electron microscopy and tomography. The 8-Å resolution structure permits the derivation of a pseudo-atomic model of CA in the immature retrovirus, which defines the protein interfaces mediating retrovirus assembly. We show that transition of an immature retrovirus into its mature infectious form involves marked rotations and translations of CA domains, that the roles of the amino-terminal and carboxy-terminal domains of CA in assembling the immature and mature hexameric lattices are exchanged, and that the CA interactions that stabilize the immature and mature viruses are almost completely distinct.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus dos Macacos de Mason-Pfizer/ultraestrutura , Modelos Moleculares , Capsídeo/metabolismo , Estrutura Terciária de Proteína , Montagem de Vírus
18.
Proc Natl Acad Sci U S A ; 111(22): 8233-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843179

RESUMO

The assembly of HIV-1 is mediated by oligomerization of the major structural polyprotein, Gag, into a hexameric protein lattice at the plasma membrane of the infected cell. This leads to budding and release of progeny immature virus particles. Subsequent proteolytic cleavage of Gag triggers rearrangement of the particles to form mature infectious virions. Obtaining a structural model of the assembled lattice of Gag within immature virus particles is necessary to understand the interactions that mediate assembly of HIV-1 particles in the infected cell, and to describe the substrate that is subsequently cleaved by the viral protease. An 8-Å resolution structure of an immature virus-like tubular array assembled from a Gag-derived protein of the related retrovirus Mason-Pfizer monkey virus (M-PMV) has previously been reported, and a model for the arrangement of the HIV-1 capsid (CA) domains has been generated based on homology to this structure. Here we have assembled tubular arrays of a HIV-1 Gag-derived protein with an immature-like arrangement of the C-terminal CA domains and have solved their structure by using hybrid cryo-EM and tomography analysis. The structure reveals the arrangement of the C-terminal domain of CA within an immature-like HIV-1 Gag lattice, and provides, to our knowledge, the first high-resolution view of the region immediately downstream of CA, which is essential for assembly, and is significantly different from the respective region in M-PMV. Our results reveal a hollow column of density for this region in HIV-1 that is compatible with the presence of a six-helix bundle at this position.


Assuntos
HIV-1/química , HIV-1/ultraestrutura , Nanotubos/química , Nanotubos/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , HIV-1/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
19.
EMBO J ; 31(15): 3270-81, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22705946

RESUMO

Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger--a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca(2+)-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca(2+) concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Cálcio/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Humanos , Técnicas In Vitro , Fusão de Membrana/efeitos dos fármacos , Modelos Biológicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Sinaptotagmina I/fisiologia , Fatores de Tempo , Lipossomas Unilamelares/metabolismo
20.
EMBO Rep ; 15(3): 308-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24493260

RESUMO

Synaptic vesicles fuse with the plasma membrane in response to Ca(2+) influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca(2)(+)-triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high-energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp.


Assuntos
Cálcio/metabolismo , Membrana Celular/ultraestrutura , Fusão de Membrana , Proteínas Munc18/metabolismo , Sinaptotagmina I/metabolismo , Lipossomas Unilamelares/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA