Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Magn Reson Med ; 91(6): 2247-2256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38205917

RESUMO

PURPOSE: We present a novel silent echo-planar spectroscopic imaging (EPSI) readout, which uses an ultrasonic gradient insert to accelerate MRSI while producing a high spectral bandwidth (20 kHz) and a low sound level. METHODS: The ultrasonic gradient insert consisted of a single-axis (z-direction) plug-and-play gradient coil, powered by an audio amplifier, and produced 40 mT/m at 20 kHz. The silent EPSI readout was implemented in a phase-encoded MRSI acquisition. Here, the additional spatial encoding provided by this silent EPSI readout was used to reduce the number of phase-encoding steps. Spectroscopic acquisitions using phase-encoded MRSI, a conventional EPSI-readout, and the silent EPSI readout were performed on a phantom containing metabolites with resonance frequencies in the ppm range of brain metabolites (0-4 ppm). These acquisitions were used to determine sound levels, showcase the high spectral bandwidth of the silent EPSI readout, and determine the SNR efficiency and the scan efficiency. RESULTS: The silent EPSI readout featured a 19-dB lower sound level than a conventional EPSI readout while featuring a high spectral bandwidth of 20 kHz without spectral ghosting artifacts. Compared with phase-encoded MRSI, the silent EPSI readout provided a 4.5-fold reduction in scan time. In addition, the scan efficiency of the silent EPSI readout was higher (82.5% vs. 51.5%) than the conventional EPSI readout. CONCLUSIONS: We have for the first time demonstrated a silent spectroscopic imaging readout with a high spectral bandwidth and low sound level. This sound reduction provided by the silent readout is expected to have applications in sound-sensitive patient groups, whereas the high spectral bandwidth could benefit ultrahigh-field MR systems.


Assuntos
Processamento de Imagem Assistida por Computador , Ultrassom , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Imagem Ecoplanar/métodos
2.
NMR Biomed ; : e5126, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403795

RESUMO

The brain relies on an effective clearance mechanism to remove metabolic waste products for the maintenance of homeostasis. Recent studies have focused on elucidating the forces that drive the motion of cerebrospinal fluid (CSF), responsible for removal of these waste products. We demonstrate that vascular responses evoked using controlled manipulations of partial pressure of carbon dioxide (PaCO2 ) levels, serve as an endogenous driver of CSF clearance from the brain. To demonstrate this, we retrospectively surveyed our database, which consists of brain metastases patients from whom blood oxygen level-dependent (BOLD) images were acquired during targeted hypercapnic and hyperoxic respiratory challenges. We observed a correlation between CSF inflow signal around the fourth ventricle and CO2 -induced changes in cerebral blood volume. By contrast, no inflow signal was observed in response to the nonvasoactive hyperoxic stimulus, validating our measurements. Moreover, our results establish a link between the rate of the hemodynamic response (to elevated PaCO2 ) and peritumoral edema load, which we suspect may affect CSF flow, consequently having implications for brain clearance. Our expanded perspective on the factors involved in neurofluid flow underscores the importance of considering both cerebrovascular responses, as well as the brain mechanical properties, when evaluating CSF dynamics in the context of disease processes.

3.
Magn Reson Med ; 90(3): 863-874, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154391

RESUMO

PURPOSE: To demonstrate the feasibility of deuterium echo-planar spectroscopic imaging (EPSI) to accelerate 3D deuterium metabolic imaging in the human liver at 7 T. METHODS: A deuterium EPSI sequence, featuring a Hamming-weighted k-space acquisition pattern for the phase-encoding directions, was implemented. Three-dimensional deuterium EPSI and conventional MRSI were performed on a water/acetone phantom and in vivo in the human liver at natural abundance. Moreover, in vivo deuterium EPSI measurements were acquired after oral administration of deuterated glucose. The effect of acquisition time on SNR was evaluated by retrospectively reducing the number of averages. RESULTS: The SNR of natural abundance deuterated water signal in deuterium EPSI was 6.5% and 5.9% lower than that of MRSI in the phantom and in vivo experiments, respectively. In return, the acquisition time of in vivo EPSI data could be reduced retrospectively to 2 min, beyond the minimal acquisition time of conventional MRSI (of 20 min in this case), while still leaving sufficient SNR. Three-dimensional deuterium EPSI, after administration of deuterated glucose, enabled monitoring of hepatic glucose dynamics with full liver coverage, a spatial resolution of 20 mm isotropic, and a temporal resolution of 9 min 50 s, which could retrospectively be shortened to 2 min. CONCLUSION: In this work, we demonstrate the feasibility of accelerated 3D deuterium metabolic imaging of the human liver using deuterium EPSI. The acceleration obtained with EPSI can be used to increase temporal and/or spatial resolution, which will be valuable to study tissue metabolism of deuterated compounds over time.


Assuntos
Imagem Ecoplanar , Fígado , Humanos , Deutério , Estudos Retrospectivos , Imagem Ecoplanar/métodos , Espectroscopia de Ressonância Magnética , Fígado/diagnóstico por imagem , Encéfalo
4.
Neuroimage ; 261: 119523, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907499

RESUMO

Cerebral blood arrival and tissue transit times are sensitive measures of the efficiency of tissue perfusion and can provide clinically meaningful information on collateral blood flow status. We exploit the arterial blood oxygen level dependent (BOLD) signal contrast established by precisely decreasing, and then increasing, arterial hemoglobin saturation using respiratory re-oxygenation challenges to quantify arterial blood arrival times throughout the brain. We term this approach the Step Hemoglobin re-Oxygenation Contrast Stimulus (SHOCS). Carpet plot analysis yielded measures of signal onset (blood arrival), global transit time (gTT) and calculations of relative total blood volume. Onset times averaged across 12 healthy subjects were 1.1 ± 0.4 and 1.9 ± 0.6 for cortical gray and deep white matter, respectively. The average whole brain gTT was 4.5 ± 0.9 s. The SHOCS response was 1.7 fold higher in grey versus white matter; in line with known differences in tissue-specific blood volume fraction. SHOCS was also applied in a patient with unilateral carotid artery occlusion revealing ipsilateral prolonged signal onset with normal perfusion in the unaffected hemisphere. We anticipate that SHOCS will further inform on the extent of collateral blood flow in patients with upstream steno-occlusive vascular disease, including those already known to manifest reductions in vasodilatory reserve capacity or vascular steal.


Assuntos
Artérias , Circulação Cerebrovascular , Encéfalo , Dióxido de Carbono , Circulação Cerebrovascular/fisiologia , Humanos , Hipóxia , Imageamento por Ressonância Magnética
5.
NMR Biomed ; 35(10): e4771, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577344

RESUMO

The increased signal-to-noise ratio (SNR) and chemical shift dispersion at high magnetic fields (≥7 T) have enabled neuro-metabolic imaging at high spatial resolutions. To avoid very long acquisition times with conventional magnetic resonance spectroscopic imaging (MRSI) phase-encoding schemes, solutions such as pulse-acquire or free induction decay (FID) sequences with short repetition time and inner volume selection methods with acceleration (echo-planar spectroscopic imaging [EPSI]), have been proposed. With the inner volume selection methods, limited spatial coverage of the brain and long echo times may still impede clinical implementation. FID-MRSI sequences benefit from a short echo time and have a high SNR per time unit; however, contamination from strong extra-cranial lipid signals remains a problem that can hinder correct metabolite quantification. L2-regularization can be applied to remove lipid signals in cases with high spatial resolution and accurate prior knowledge. In this work, we developed an accelerated two-dimensional (2D) FID-MRSI sequence using an echo-planar readout and investigated the performance of lipid suppression by L2-regularization, an external crusher coil, and the combination of these two methods to compare the resulting spectral quality in three subjects. The reduction factor of lipid suppression using the crusher coil alone varies from 2 to 7 in the lipid region of the brain boundary. For the combination of the two methods, the average lipid area inside the brain was reduced by 2% to 38% compared with that of unsuppressed lipids, depending on the subject's region of interest. 2D FID-EPSI with external lipid crushing and L2-regularization provides high in-plane coverage and is suitable for investigating brain metabolite distributions at high fields.


Assuntos
Imagem Ecoplanar , Prótons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Ecoplanar/métodos , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
6.
Neuroimage ; 245: 118771, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861395

RESUMO

Brain stress testing using blood oxygenation level-dependent (BOLD) MRI to evaluate changes in cerebrovascular reactivity (CVR) is of growing interest for evaluating white matter integrity. However, even under healthy conditions, the white matter BOLD-CVR response differs notably from that observed in the gray matter. In addition to actual arterial vascular control, the venous draining topology may influence the WM-CVR response leading to signal delays and dispersions. These types of alterations in hemodynamic parameters are sometimes linked with pathology, but may also arise from differences in normal venous architecture. In this work, high-resolution T2*weighted anatomical images combined with BOLD imaging during a hypercapnic breathing protocol were acquired using a 7 tesla MRI system. Hemodynamic parameters including base CVR, hemodynamic lag, lag-corrected CVR, response onset and signal dispersion, and finally ΔCVR (corrected CVR minus base CVR) were calculated in 8 subjects. Parameter maps were spatially normalized and correlated against an MNI-registered white matter medullary vein atlas. Moderate correlations (Pearson's rho) were observed between medullary vessel frequency (MVF) and ΔCVR (0.52; 0.58 for total WM), MVF and hemodynamic lag (0.42; 0.54 for total WM), MVF and signal dispersion (0.44; 0.53 for total WM), and finally MVF and signal onset (0.43; 0.52 for total WM). Results indicate that, when assessed in the context of the WM venous architecture, changes in the response shape may only be partially reflective of the actual vascular reactivity response occurring further upstream by control vessels. This finding may have implications when attributing diseases mechanisms and/or progression to presumed impaired WM BOLD-CVR.


Assuntos
Veias Cerebrais/diagnóstico por imagem , Hipercapnia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Acoplamento Neurovascular/fisiologia , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
7.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239721

RESUMO

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Assuntos
Glutaminase/genética , Glutaminase/fisiologia , Adolescente , Animais , Encéfalo/metabolismo , Catarata/genética , Pré-Escolar , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Feminino , Fibroblastos , Mutação com Ganho de Função/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
8.
Neuroimage ; 187: 154-165, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29217405

RESUMO

Redistribution of blood flow across different brain regions, arising from the vasoactive nature of hypercapnia, can introduce errors when examining cerebrovascular reactivity (CVR) response delays. In this study, we propose a novel analysis method to characterize hemodynamic delays in the blood oxygen level dependent (BOLD) response to hypercapnia, and hyperoxia, as a way to provide insight into transient differences in vascular reactivity between cortical regions, and across tissue depths. A pseudo-continuous arterial spin labeling sequence was used to acquire BOLD and cerebral blood flow simultaneously in 19 healthy adults (12 F; 20 ± 2 years) during boxcar CO2 and O2 gas inhalation paradigms. Despite showing distinct differences in hypercapnia-induced response delay times (P < 0.05; Bonferroni corrected), grey matter regions showed homogenous hemodynamic latencies (P > 0.05) once calibrated for bolus arrival time derived using non-vasoactive hyperoxic gas challenges. Longer hypercapnic temporal delays were observed as the depth of the white matter tissue increased, although no significant differences in response lag were found during hyperoxia across tissue depth, or between grey and white matter. Furthermore, calibration of hypercapnic delays using hyperoxia revealed that deeper white matter layers may be more prone to dynamic redistribution of blood flow, which introduces response lag times ranging between 1 and 3 s in healthy subjects. These findings suggest that the combination of hypercapnic and hyperoxic gas-inhalation MRI can be used to distinguish between differences in CVR that arise as a result of delayed stimulus arrival time (due to the local architecture of the cerebrovasculature), or preferential blood flow distribution. Calibrated response delays to hypercapnia provide important insights into cerebrovascular physiology, and may be used to correct response delays associated with vascular impairment.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Hipercapnia/metabolismo , Hiperóxia/metabolismo , Imageamento por Ressonância Magnética/métodos , Calibragem , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/sangue , Córtex Cerebral/irrigação sanguínea , Feminino , Hemodinâmica , Humanos , Masculino , Oxigênio/administração & dosagem , Oxigênio/sangue , Marcadores de Spin , Adulto Jovem
9.
Neuroimage ; 172: 470-477, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408324

RESUMO

Existing cerebrovascular reactivity (CVR) techniques assess flow reactivity in either the largest cerebral vessels or at the level of the parenchyma. We examined the ability of 2D phase contrast MRI at 7 T to measure CVR in small cerebral perforating arteries. Blood flow velocity in perforators was measured in 10 healthy volunteers (mean age 26 years) using a 7 T MR scanner, using phase contrast acquisitions in the semioval center (CSO), the basal ganglia (BG) and the middle cerebral artery (MCA). Changes in flow velocity in response to a hypercapnic breathing challenge were assessed, and expressed as the percentual increase of flow velocity as a function of the increase in end tidal partial pressure of CO2. The hypercapnic challenge increased (fit ±â€¯standard error) flow velocity by 0.7 ±â€¯0.3%/mmHg in the CSO (P < 0.01). Moreover, the number of detected perforators (mean [range]) increased from 63 [27-88] to 108 [61-178] (P < 0.001). In the BG, the hypercapnic challenge increased flow velocity by 1.6 ±â€¯0.5%/mmHg (P < 0.001), and the number of detected perforators increased from 48 [24-66] to 63 [32-91] (P < 0.01). The flow in the MCA increased by 5.2 ±â€¯1.4%/mmHg (P < 0.01). Small vessel specific reactivity can now be measured in perforators of the CSO and BG, using 2D phase contrast at 7 T.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Estudo de Prova de Conceito
10.
Neuroimage ; 179: 530-539, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913284

RESUMO

BACKGROUND AND PURPOSE: The BOLD signal amplitude as a response to a hypercapnia stimulus is commonly used to assess cerebrovascular reserve. Despite recent advances, the implementation remains cumbersome and alternative ways to assess hemodynamic impairment are desirable. Resting-state BOLD signal fluctuations (rsBOLD) have been proposed however data on its sensitivity and dependence on baseline venous cerebral blood volume (vCBV) is limited. The primary aim of this study was to compare the effect sizes of resting-state and hypercapnia induced BOLD signal changes in the detection of hemodynamic impairment. The second aim of the study was to assess the dependence of BOLD signal variability on vCBV. MATERIALS AND METHODS: Fifteen patients with internal carotid artery occlusive disease and 15 matched healthy controls were included in this study. The BOLD signal was derived from a dual-echo gradient-echo echo-planar sequence during hypercapnia (HC) and hyperoxia (HO) gas modulations. BOLD (fractional) amplitude of low frequency fluctuations ((f)ALFF) was compared to HC-BOLD, BOLD response delays derived from time delay analysis and ΔBOLD in response to progressively increasing HC. Effect sizes (i.e. the standard mean difference between patients and controls) were calculated. HO-BOLD was used to estimate vCBV, and its contribution to the variability in rsBOLD signal was evaluated. RESULTS: The effect sizes of ALFF and fALFF (0.61 and 0.72) were lower than the effect sizes related to hypercapnia-based hemodynamic assessment analysis; 1.62, 1.56 and 0.90 for HC-BOLD, BOLD response delays and ΔBOLD in response to progressively increasing HC. A moderate relation was found between (f)ALFF and HC-BOLD in controls (R2 of 0.61 and 0.42), but this relation decreased in patients (R2 of 0.33 and 0.15). (f)ALFF did not differ between patients and controls whereas HC-BOLD did (p < 0.005). The ΔBOLD response to progressively increasing HC was significantly different in between patients and controls for ΔEtCO2 values ≥ 2 mmHg (at +2  mmHg F(1, 18) = 5.85, p = 0.026). Up to 31% and 53% of the variance in the ALFF and HC-BOLD spatial distribution could be explained by HO-BOLD. CONCLUSION: ALFF and fALFF demonstrated a moderate effect size to detect hemodynamic impairment whereas the effect size was large for methods employing a hypercapnia-based vascular stress stimulus. Based on our analysis of BOLD signal change as a response to a progressively increasing hypercapnia stimulus we can argue that a hypercapnia stimulus of at least 2 mmHg above baseline EtCO2 is necessary to evaluate hemodynamic impairment. We also demonstrated that a substantial amount of information imbedded in the rsBOLD and HC-BOLD was explained by HO-BOLD. HO-BOLD can serve as a proxy for vCBV and this thus indicates that one should be careful when adopting these techniques in disease cases with compromised CBV.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Doenças das Artérias Carótidas/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Hemodinâmica/fisiologia , Idoso , Volume Sanguíneo , Encéfalo/irrigação sanguínea , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
11.
Magn Reson Med ; 80(1): 126-136, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29154463

RESUMO

PURPOSE: To detect neuronal activity-evoked pH changes by amide proton transfer-chemical exchange saturation transfer (APT-CEST) MRI at 7 T. METHODS: Three healthy subjects participated in the study. A low-power 3-dimensional APT-CEST sequence was optimized through the Bloch-McConnell equations. pH sensitivity of the sequence was estimated both in phantoms and in vivo. The feasibility of pH-functional MRI was tested in Bloch-McConnell-simulated data using the optimized sequence. In healthy subjects, the visual stimuli were used to evoke transient pH changes in the visual cortex, and a 3-dimensional APT-CEST volume was acquired at the pH-sensitive frequency offset of 3.5 ppm every 12.6 s. RESULTS: In theory, a three-component general linear model was capable of separating the effects of blood oxygenation level-dependent contrast and pH. The Bloch-McConnell equations indicated that a change in pH of 0.03 should be measurable at the experimentally determined temporal signal-to-noise ratio of 108. However, only a blood oxygenation level-dependent effect in the visual cortex could be discerned during the visual stimuli experiments performed in the healthy subjects. CONCLUSIONS: The results of this study suggest that if indeed there are any transient brain pH changes in response to visual stimuli, those are under 0.03 units pH change, which is extremely difficult to detect using the existent techniques. Magn Reson Med 80:126-136, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neurônios/patologia , Oxigênio/sangue , Algoritmos , Encéfalo/diagnóstico por imagem , Dióxido de Carbono/química , Simulação por Computador , Meios de Contraste , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Modelos Teóricos , Imagens de Fantasmas , Prótons , Reprodutibilidade dos Testes
12.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28915314

RESUMO

Proton magnetic resonance spectroscopy (1 H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of 1 H-MRS metabolite quantification. It is currently unknown to what extent variations in the analysis pipeline used to quantify 1 H-MRS data affect outcomes. The purpose of this study was to evaluate whether the quantification of identical 1 H-MRS scans across independent and experienced research groups would yield comparable results. We investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own individualized and optimal parameter settings using LCModel software. Data were processed a second time in one group using an independent software package (NMRWizard) for an additional comparison with a different post-processing platform. Correlations across research groups of the ratio between the highest and, arguably, the most relevant resonances for neurotransmission [N-acetyl aspartate (NAA), N-acetyl aspartyl glutamate (NAAG) and Glu] over the total creatine [creatine (Cr) + phosphocreatine (PCr)] concentration, using Pearson's product-moment correlation coefficient (r), were calculated. Mean inter-group correlations using LCModel software were 0.87, 0.88 and 0.77 for NAA/Cr + PCr, NAA + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. The mean correlations when comparing NMRWizard results with LCModel fitting results at University Medical Center Utrecht (UMCU) were 0.87, 0.89 and 0.71 for NAA/Cr + PCr, NAA + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical 1 H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results reinforce the notion that standard practices should be established to regularize outcomes of 1 H-MRS studies, and that basis sets used for processing should be made available to the scientific community.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Creatina/análise , Ácido Glutâmico/análise , Humanos , Fosfocreatina/análise
13.
Neuroimage ; 139: 94-102, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27291492

RESUMO

Blood Oxygenation Level Dependent (BOLD) imaging in combination with vasoactive stimuli can be used to probe cerebrovascular reactivity (CVR). Characterizing the healthy, age-related changes in the BOLD-CVR response can provide a reference point from which to distinguish abnormal CVR from the otherwise normal effects of ageing. Using a computer controlled gas delivery system, we examine differences in BOLD-CVR response to progressive hypercapnia between 16 young (28±3years, 9 female) and 30 elderly subjects (66±4years, 13 female). Furthermore, we incorporate baseline T2* information to broaden our interpretation of the BOLD-CVR response. Significant age-related differences were observed. Grey matter CVR at 7mmHg above resting PetCO2 was lower amongst elderly (0.19±0.06%ΔBOLD/mmHg) as compared to young subjects (0.26±0.07%ΔBOLD/mmHg). White matter CVR at 7mmHg above baseline PetCO2 showed no significant difference between young (0.04±0.02%ΔBOLD/mmHg) and elderly subjects (0.05±0.03%ΔBOLD/mmHg). We saw no significant differences in the BOLD signal response to progressive hypercapnia between male and female subjects in either grey or white matter. The observed differences in the healthy BOLD-CVR response could be explained by age-related changes in vascular mechanical properties.


Assuntos
Envelhecimento/metabolismo , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Hipercapnia/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Oximetria/métodos , Oxigênio/sangue , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Consumo de Oxigênio
14.
Neuroimage ; 114: 239-48, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25876215

RESUMO

Changes in cerebral blood flow (CBF) in response to hypercapnia induced changes in vascular tone, known as cerebrovascular reactivity (CVR), can be measured using the Blood Oxygenation Level Dependent (BOLD) MR contrast. We examine regional differences in the BOLD-CVR response to a progressively increasing hypercapnic stimulus as well as regional BOLD characteristics for the return to baseline normocapnia. CVR across 9 subjects was highest in the cerebral lobes and deep gray matter. Peak CVR in these regions was measured at 3.6±1.6mmHg above baseline end-tidal CO2. White matter CVR was generally reduced compared to that of the gray matter (peak white matter CVR was ~48% lower). A positive relationship between the end-tidal CO2 value at which peak CVR was measured and white matter depth is observed. Furthermore, the time required for the BOLD signal to return to baseline after cessation of the hypercapnic stimulus, was also related to white matter depth; the return, expressed as a time constant, was ~25% longer in white matter. To explain the observed differences in regional CVR response, a model is proposed that takes into account the local architecture of the cerebrovascular, which can result in changes in regional blood flow distribution as a function of end-tidal CO2.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular , Hipercapnia/fisiopatologia , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Dióxido de Carbono/administração & dosagem , Circulação Cerebrovascular/efeitos dos fármacos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Branca/irrigação sanguínea , Substância Branca/efeitos dos fármacos , Substância Branca/fisiopatologia
15.
Neuroimage ; 98: 296-305, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24830840

RESUMO

Cerebrovascular reactivity (CVR) is a mechanism responsible for maintaining stable perfusion pressure within the brain via smooth muscle mediated modulations of vascular tone. The amplitude of cerebral blood flow (CBF) change in response to a stimulus has been evaluated using Blood Oxygen Level Dependent (BOLD) MRI, however the relationship between the stimulus and the measured signal remains unclear. CVR measured invasively in animal models and using blood-velocity based measurements in humans has demonstrated a sigmoidal relationship between cerebral blood flow and CO2 partial pressure. Using an ultra-high magnetic field strength (7T) MRI scanner and a computer controlled gas delivery system, we examined the regional and voxel-wise CVR response in relation to a targeted progressively increasing hypo- to hypercapnic stimulus. The aim of this study was to assess the non-linearity/sigmoidal behavior of the CVR response at varying arterial CO2 (PaCO2) levels. We find that a sigmoidal model provides a better description of the BOLD signal response to increasing PaCO2 than a linear model. A distinct whole-brain and gray matter BOLD-CVR signal plateau was observed in both voxel-wise and regional analysis. Furthermore, we demonstrate that a progressively increasing stimulus in combination with a sigmoidal response model can be used to obtain CVR values and provides additional physiologically relevant information (such as linear and non-linear response domains, and maximum response amplitudes) that may be more difficult to obtain from blocked CVR experiments. Considering these results, we propose an alternative way in which to define CVR based on the derivative of the BOLD-CVR response curve, which can potentially be used to differentiate between healthy and diseased vascular states.


Assuntos
Mapeamento Encefálico , Circulação Cerebrovascular , Hipercapnia/fisiopatologia , Hipocapnia/fisiopatologia , Imageamento por Ressonância Magnética , Encéfalo/irrigação sanguínea , Feminino , Humanos , Masculino , Dinâmica não Linear
16.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826311

RESUMO

Recent advances in functional magnetic resonance imaging (fMRI) at ultra-high field (≥7 tesla), novel hardware, and data analysis methods have enabled detailed research on neurovascular function, such as cortical layer-specific activity, in both human and nonhuman species. A widely used fMRI technique relies on the blood oxygen level-dependent (BOLD) signal. BOLD fMRI offers insights into brain function by measuring local changes in cerebral blood volume, cerebral blood flow, and oxygen metabolism induced by increased neuronal activity. Despite its potential, interpreting BOLD fMRI data is challenging as it is only an indirect measurement of neuronal activity. Computational modeling can help interpret BOLD data by simulating the BOLD signal formation. Current developments have focused on realistic 3D vascular models based on rodent data to understand the spatial and temporal BOLD characteristics. While such rodent-based vascular models highlight the impact of the angioarchitecture on the BOLD signal amplitude, anatomical differences between the rodent and human vasculature necessitate the development of human-specific models. Therefore, a computational framework integrating human cortical vasculature, hemodynamic changes, and biophysical properties is essential. Here, we present a novel computational approach: a three-dimensional VAscular MOdel based on Statistics (3D VAMOS), enabling the investigation of the hemodynamic fingerprint of the BOLD signal within a model encompassing a fully synthetic human 3D cortical vasculature and hemodynamics. Our algorithm generates microvascular and macrovascular architectures based on morphological and topological features from the literature on human cortical vasculature. By simulating specific oxygen saturation states and biophysical interactions, our framework characterizes the intravascular and extravascular signal contributions across cortical depth and voxel-wise levels for gradient-echo and spin-echo readouts. Thereby, the 3D VAMOS computational framework demonstrates that using human characteristics significantly affects the BOLD fingerprint, making it an essential step in understanding the fundamental underpinnings of layer-specific fMRI experiments.

17.
J Cereb Blood Flow Metab ; 43(12): 2072-2084, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632255

RESUMO

Arterial spin labeling (ASL) MRI is a routine clinical imaging technique that provides quantitative cerebral blood flow (CBF) information. A related technique is blood oxygenation level-dependent (BOLD) MRI during hypercapnia, which can assess cerebrovascular reactivity (CVR). ASL is weighted towards arteries, whereas BOLD is weighted towards veins. Their associated parameters in heterogeneous tissue types or under different hemodynamic conditions remains unclear. Baseline multi-delay ASL MRI and BOLD MRI during hypercapnia were performed in fourteen patients with brain metastases. In the ROI analysis, the CBF and CVR values were positively correlated in regions showing sufficient reserve capacity (i.e. non-steal regions, rrm = 0.792). Additionally, longer hemodynamic lag times were related to lower baseline CBF (rrm = -0.822) and longer arterial arrival time (AAT; rrm = 0.712). In contrast, in regions exhibiting vascular steal an inverse relationship was found with higher baseline CBF related to more negative CVR (rrm = -0.273). These associations were confirmed in voxelwise analyses. The relationship between CBF, AAT and CVR measures seems to be dependent on the vascular status of the underlying tissue. Healthy tissue relationships do not hold in tissues experiencing impaired or exhausted autoregulation. CVR metrics can possibly identify at-risk areas before perfusion deficiencies become visible on ASL MRI, specifically within vascular steal regions.


Assuntos
Neoplasias Encefálicas , Hipercapnia , Humanos , Hipercapnia/diagnóstico por imagem , Artérias/patologia , Imageamento por Ressonância Magnética/métodos , Hemodinâmica , Neoplasias Encefálicas/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Encéfalo/patologia , Marcadores de Spin
18.
J Clin Med ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445429

RESUMO

Measurements of cerebrovascular reactivity (CVR) are essential for treatment decisions in moyamoya vasculopathy (MMV). Since MMV patients are often young or cognitively impaired, anesthesia is commonly used to limit motion artifacts. Our aim was to investigate the effect of anesthesia on the CVR in pediatric MMV. We compared the CVR with multidelay-ASL and BOLD MRI, using acetazolamide as a vascular stimulus, in all awake and anesthesia pediatric MMV scans at our institution. Since a heterogeneity in disease and treatment influences the CVR, we focused on the (unaffected) cerebellum. Ten awake and nine anesthetized patients were included. The post-acetazolamide CBF and ASL-CVR were significantly lower in anesthesia patients (47.1 ± 15.4 vs. 61.4 ± 12.1, p = 0.04; 12.3 ± 8.4 vs. 23.7 ± 12.2 mL/100 g/min, p = 0.03, respectively). The final BOLD-CVR increase (0.39 ± 0.58 vs. 3.6 ± 1.2% BOLD-change (mean/SD), p < 0.0001), maximum slope of increase (0.0050 ± 0.0040%/s vs. 0.017 ± 0.0059%, p < 0.0001), and time to maximum BOLD-increase (~463 ± 136 and ~697 ± 144 s, p = 0.0028) were all significantly lower in the anesthesia group. We conclude that the response to acetazolamide is distinctively different between awake and anesthetized MMV patients, and we hypothesize that these findings can also apply to other diseases and methods of measuring CVR under anesthesia. Considering that treatment decisions heavily depend on CVR status, caution is warranted when assessing CVR under anesthesia.

19.
J Cereb Blood Flow Metab ; 43(3): 419-432, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36262088

RESUMO

Ultra-high field functional magnetic resonance imaging (fMRI) offers the spatial resolution to measure neuronal activity at the scale of cortical layers. However, cortical depth dependent vascularization differences, such as a higher prevalence of macro-vascular compartments near the pial surface, have a confounding effect on depth-resolved blood-oxygen-level dependent (BOLD) fMRI signals. In the current study, we use hypercapnic and hyperoxic breathing conditions to quantify the influence of all venous vascular and micro-vascular compartments on laminar BOLD fMRI, as measured with gradient-echo (GE) and spin-echo (SE) scan sequences, respectively. We find that all venous vascular and micro-vascular compartments are capable of comparable theoretical maximum signal intensities, as represented by the M-value parameter. However, the capacity for vessel dilation, as reflected by the cerebrovascular reactivity (CVR), is approximately two and a half times larger for all venous vascular compartments combined compared to the micro-vasculature at superficial layers. Finally, there is roughly a 35% difference in estimates of CBV changes between all venous vascular and micro-vascular compartments, although this relative difference was approximately uniform across cortical depth. Thus, our results suggest that fMRI BOLD signal differences across cortical depth are likely caused by differences in dilation properties between macro- and micro-vascular compartments.


Assuntos
Hiperóxia , Oxigênio , Humanos , Circulação Cerebrovascular/fisiologia , Hiperóxia/metabolismo , Imageamento por Ressonância Magnética/métodos , Hipercapnia/metabolismo , Mapeamento Encefálico , Encéfalo/metabolismo
20.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686575

RESUMO

Brain metastases occur in ten to thirty percent of the adult cancer population. Treatment consists of different (palliative) options, including stereotactic radiosurgery (SRS). Sensitive MRI biomarkers are needed to better understand radiotherapy-related effects on cerebral physiology and the subsequent effects on neurocognitive functioning. In the current study, we used physiological imaging techniques to assess cerebral blood flow (CBF), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2) and cerebrovascular reactivity (CVR) before and three months after SRS in nine patients with brain metastases. The results showed improvement in OEF, CBF and CMRO2 within brain tissue that recovered from edema (all p ≤ 0.04), while CVR remained impacted. We observed a global post-radiotherapy increase in CBF in healthy-appearing brain tissue (p = 0.02). A repeated measures correlation analysis showed larger reductions within regions exposed to higher radiotherapy doses in CBF (rrm = -0.286, p < 0.001), CMRO2 (rrm = -0.254, p < 0.001), and CVR (rrm = -0.346, p < 0.001), but not in OEF (rrm = -0.004, p = 0.954). Case analyses illustrated the impact of brain metastases progression on the post-radiotherapy changes in both physiological MRI measures and cognitive performance. Our preliminary findings suggest no radiotherapy effects on physiological parameters occurred in healthy-appearing brain tissue within 3-months post-radiotherapy. Nevertheless, as radiotherapy can have late side effects, larger patient samples allowing meaningful grouping of patients and longer follow-ups are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA