Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Virol J ; 18(1): 214, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717661

RESUMO

BACKGROUND: Human cytomegalovirus (HCMV) infection in utero is very common during pregnancy, which can lead to adverse outcomes in both pregnancy and progeny, but its pathogenesis has not been fully clarified. The decrease of extravillous cytotrophoblasts (EVT) invasion is an essential pathophysiological process of some pregnancy complications. Hippo-YAP signaling pathway plays an important role in regulating cell proliferation and apoptosis. However, whether YAP is involved in HCMV uterine infection remains to be studied. METHODS: The primary EVT was cultured and infected by the HCMV strain AD169 virus in vitro. Immunofluorescence staining of HCMVpp65 antigen was conducted afterward to confirm the establishment of an infection model. The optimal virus infection dose was determined by the EVT proliferation status in vitro. Real-time PCR was performed to examine the mRNA level of major genes involved in the Hippo pathway in EVT after HCMV infection. The effect of HCMV on the expression of YAP protein in EVT was evaluated by Immunofluorescence staining and Western blot. An in vitro cell invasion assay was carried out to analyze the influence of HCMV on EVT invasion. The changes of EVT invasion was accessed by establishing YAP silencing and over-expression models using YAP1 specific siRNA and plasmid pcDH. RESULTS: The optimal HCMV infection dose was 282.5TCID50/ml. Compared to the control group, the infection of HCMV significantly reduced the mRNA expression of Mst1, Mst2, SAV, Lats1, Lats2, Mob1, YAP1, TAZ, TEAD1-4 genes and YAP protein expression in the Hippo-YAP pathway. HCMV infection also decreased the EVT invasion. In non-infected EVT, the number of transmembrane EVT cells was significantly reduced when YAP1 gene was silenced, while it was significantly increased when YAP1 gene was over-expressed. In the HCMV-infected EVT, the number of transmembrane EVT cells significantly increased when over-expressed and eventually recovered to the level of NC. CONCLUSIONS: HCMV may decrease EVT invasion by inhibiting the expression of mRNA and protein of YAP in the Hippo-YAP signaling pathway. HCMV eventually reduces the invasion ability of EVT by inhibiting multiple genes in the Hippo-YAP signaling pathway, especially inhibiting YAP which serves as the downstream effector.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Proliferação de Células , Citomegalovirus/fisiologia , Feminino , Via de Sinalização Hippo , Humanos , Gravidez , Proteínas Serina-Treonina Quinases , Trofoblastos , Proteínas Supressoras de Tumor/metabolismo
2.
Nutr Metab Cardiovasc Dis ; 31(8): 2449-2457, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34154888

RESUMO

BACKGROUND AND AIMS: Hyperuricemia (HUA) were associated with Metabolic syndrome (MetS) and its components. However, the molecular mechanism of uric acid in the development of MetS was not well elucidated. The aim of this study was developing a systemic metabolic profile by using metabolomics approach to explore the molecular mechanism of uric acid in the development of MetS. METHODS AND RESULTS: Anthropometric, clinical biochemical data, and serum samples were collected from patients with MetS, MetS combined with HUA (MetS & HUA) and healthy controls. 1H nuclear magnetic resonance (NMR) spectroscopy was used to detect endogenous small molecule metabolites of serum samples, then multivariate statistical analysis was applied to distinguish samples of different groups. In addition, pathway analysis was performed to contribute to understanding the metabolic change. By serum metabolic profiling, a total of 20 identified metabolites including lipids, amino acids, and organic acids were significantly altered in MetS and MetS & HUA patients. MetS & HUA patients presented a more severe disorder in both identified metabolites and BMI and biochemical indexes. According to pathway analysis, there were 3 and 5 metabolic pathways remarkably perturbed in MetS and MetS & HUA group respectively. CONCLUSION: Taken together, we identified disordered metabolites and related pathways for both MetS and MetS & HUA patients, and found a more severe metabolic disorder in MetS patients who has a higher serum uric acid. Our study provides biochemical insights into the metabolic alteration for the progress of MetS.


Assuntos
Metabolismo Energético , Hiperuricemia/diagnóstico , Síndrome Metabólica/diagnóstico , Metaboloma , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Ácido Úrico/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Progressão da Doença , Humanos , Hiperuricemia/sangue , Masculino , Síndrome Metabólica/sangue , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA