Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7966): 740-747, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344650

RESUMO

Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1-8. Muscle achieves its toughness through finely controlled forced domain unfolding-refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9-11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels without compromising their toughness. By introducing chain entanglements13 into the hydrogel network made of folded elastomeric proteins, we are able to engineer highly stiff and tough protein hydrogels, which seamlessly combine mutually incompatible mechanical properties, including high stiffness, high toughness, fast recovery and ultrahigh compressive strength, effectively converting soft protein biomaterials into stiff and tough materials exhibiting mechanical properties close to those of cartilage. Our study provides a general route towards engineering protein-based, stiff and tough biomaterials, which will find applications in biomedical engineering, such as osteochondral defect repair, and material sciences and engineering.


Assuntos
Materiais Biocompatíveis , Cartilagem , Hidrogéis , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cartilagem/química , Colágeno/química , Conectina/química , Hidrogéis/síntese química , Hidrogéis/química , Proteoglicanas/química , Engenharia Tecidual/métodos , Humanos
2.
Biomacromolecules ; 23(7): 3009-3016, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35749455

RESUMO

Fluorescent polymeric hydrogels are promising soft and wet media for information storage that are desirable for lifelike biomaterials and flexible electronics. Hydrogels based on engineered proteins have attracted considerable interest. However, their potential utility as information storage media has remained largely unexplored. Here, we report a protein-based hydrogel that can serve as an information storage medium. Using LOVTRAP, which consists of protein LOV2 and its binding partner ZDark1, we developed a novel strategy to decorate/release fluorescent proteins onto/from a blank protein hydrogel slate in light-controlled and spatially defined fashions, reversibly generating fluorescent patterns such as quick response codes. To increase the information storage capacity, we further developed grayscale patterning to generate pseudo-colored multi-dimensional fluorescent images. Results of this new method demonstrate a novel reversible information storage approach in soft and wet materials and open a new avenue toward developing next-generation protein-based smart materials for information storage and anti-counterfeit applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Armazenamento e Recuperação da Informação , Polímeros
3.
Langmuir ; 37(33): 10214-10222, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34396769

RESUMO

Protein-based hydrogels can mimic many aspects of native extracellular matrices (ECMs) and are promising biomedical materials that find various applications in cell proliferation, drug/cell delivery, and tissue engineering. To be adapted for different tasks, it is important that the mechanical and/or biochemical properties of protein-based hydrogels can be regulated by external stimuli. Light as a regulation stimulus is of advantage because it can be easily applied in demanded spatiotemporal manners. The noncovalent binding between the light-oxygen-voltage-sensing domain 2 (LOV2) and its binding partner ZDark1 (zdk1), named as LOVTRAP, is a light-responsive interaction. The binding affinity of LOVTRAP is much higher in dark than that under blue light irradiation. Taking advantage of these light-responsive interactions, herein we endeavored to use LOVTRAP as a crosslinking mechanism to engineer light-responsive protein hydrogels. Using LOV2-containing and zdk1-containing multifunctional protein building blocks, we successfully engineered a light-responsive protein hydrogel whose viscoelastic properties can change in response to light: in the dark, the hydrogel showed higher storage modulus; under blue light irradiation, the storage modulus decreased. Due to the noncovalent nature of the LOVTRAP, the engineered LOVTRAP protein hydrogels displayed shear-thinning and self-healing properties and served as an excellent injectable protein hydrogel. We anticipated that this new class of light-responsive protein hydrogels will broaden the scope of dynamic protein hydrogels and help develop other light-responsive protein hydrogels for biomedical applications.


Assuntos
Hidrogéis , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
4.
Nat Commun ; 13(1): 137, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013234

RESUMO

Engineering shape memory/morphing materials have achieved considerable progress in polymer-based systems with broad potential applications. However, engineering protein-based shape memory/morphing materials remains challenging and under-explored. Here we report the design of a bilayer protein-based shape memory/morphing hydrogel based on protein folding-unfolding mechanism. We fabricate the protein-bilayer structure using two tandem modular elastomeric proteins (GB1)8 and (FL)8. Both protein layers display distinct denaturant-dependent swelling profiles and Young's moduli. Due to such protein unfolding-folding induced changes in swelling, the bilayer hydrogels display highly tunable and reversible bidirectional bending deformation depending upon the denaturant concentration and layer geometry. Based on these programmable and reversible bending behaviors, we further utilize the protein-bilayer structure as hinge to realize one-dimensional to two-dimensional and two-dimensional to three-dimensional folding transformations of patterned hydrogels. The present work will offer new inspirations for the design and fabrication of novel shape morphing materials.


Assuntos
Elastômeros/química , Hidrogéis/química , Polímeros/química , Proteínas/química , Sequência de Aminoácidos , Módulo de Elasticidade , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Dobramento de Proteína , Desdobramento de Proteína , Molhabilidade
5.
Chem Commun (Camb) ; 56(18): 2695-2698, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030397

RESUMO

A BODIPY-based fluorescent sensor PS with an NO4S2 podand ligand was studied for the selective detection of Pt2+ over 21 cations as well as selected platinum drugs in aqueous medium. The platinum sensor PS shows 28-fold, 22-fold and 14-fold fluorescence turn-on enhancements to Pt2+, cisplatin and nedaplatin, and was thereby employed to detect platinum drugs in A-549 human lung cancer cells.


Assuntos
Compostos de Boro/química , Cisplatino/análise , Corantes Fluorescentes/química , Neoplasias Pulmonares/diagnóstico por imagem , Platina/análise , Células A549 , Cisplatino/uso terapêutico , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Imagem Óptica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA