Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 317(2): E250-E260, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31084489

RESUMO

Fetuin-A (Fet-A), a hepatokine associated with insulin resistance, obesity, and incident type 2 diabetes, is shown to exist in both phosphorylated and dephosphorylated forms in circulation. However, studies on fetuin-A phosphorylation status in insulin-resistant conditions and its functional significance are limited. We demonstrate that serum phosphofetuin-A (Ser312) levels were significantly elevated in high-fat diet-induced obese mice, insulin-resistant Zucker diabetic fatty rats, and in individuals with obesity who are insulin resistant. Unlike serum total fetuin-A, serum phosphofetuin-A was associated with body weight, insulin, and markers of insulin resistance. To characterize potential mechanisms, fetuin-A was purified from Hep3B human hepatoma cells. Hep3B Fet-A was phosphorylated (Ser312) and inhibited insulin-stimulated glucose uptake and glycogen synthesis in L6GLUT4 myoblasts. Furthermore, single (Ser312Ala) and double (Ser312Ala + Ser120Ala) phosphorylation-defective Fet-A mutants were without effect on glucose uptake and glycogen synthesis in L6GLUT4 myoblasts. Together, our studies demonstrate that phosphorylation status of Fet-A (Ser312) is associated with obesity and insulin resistance and raise the possibility that Fet-A phosphorylation may play a role in regulation of insulin action.


Assuntos
Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteínas Quinases/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Células 3T3-L1 , Adulto , Idoso , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Insulina/metabolismo , Antagonistas da Insulina/metabolismo , Antagonistas da Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosforilação , Ratos , Ratos Zucker , alfa-2-Glicoproteína-HS/farmacologia
2.
Am J Physiol Endocrinol Metab ; 296(1): E37-46, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18840759

RESUMO

Factors secreted by macrophages contribute to whole body insulin resistance, acting in part on adipose tissue. Muscle is the major tissue for glucose disposal, but how macrophage-derived factors impact skeletal muscle glucose uptake is unknown, or whether the macrophage environment influences this response. We hypothesized that conditioned medium from macrophages pretreated with palmitate or LPS would directly affect insulin action and glucose uptake in muscle cells. L6-GLUT4myc myoblasts were exposed to conditioned medium from RAW 264.7 macrophages pretreated with palmitate or LPS. Conditioned medium from palmitate-treated RAW 264.7 macrophages inhibited myoblast insulin-stimulated glucose uptake, GLUT4 translocation, and Akt phosphorylation while activating JNK p38 MAPK, decreasing IkappaBalpha, and elevating inflammation markers. Surprisingly, and opposite to its effects on adipose cells, conditioned medium from LPS-treated macrophages stimulated myoblast insulin-stimulated glucose uptake, GLUT4 translocation, and Akt phosphorylation without affecting stress kinases or inflammation indexes. This medium had markedly elevated IL-10 levels, and IL-10, alone, potentiated insulin action in myoblasts and partly reversed the insulin resistance imparted by medium from palmitate-treated macrophages. IL-10 neutralizing antibodies blunted the positive influence of LPS macrophage-conditioned medium. We conclude that myoblasts and adipocytes respond differently to cytokines. Furthermore, depending on their environment, macrophages negatively or positively influence muscle cells. Macrophages exposed to palmitate produce a mixture of proinflammatory cytokines that reduce insulin action in muscle cells; conversely, LPS-activated macrophages increase insulin action, likely via IL-10. Macrophages may be an integral element in glucose homeostasis in vivo, relaying effects of circulating factors to skeletal muscle.


Assuntos
Insulina/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ácido Palmítico/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Meios de Cultivo Condicionados , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/fisiologia , Interleucina-10/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Proteína Oncogênica v-akt/imunologia , RNA Mensageiro/química , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Arch Physiol Biochem ; 115(4): 176-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19671019

RESUMO

Obesity is associated with insulin resistance and increased risk for developing type 2 diabetes. Enlarged adipocytes develop resistance to the anti-lipolytic action of insulin. Elevated levels of fatty acids in the plasma and interstitial fluids lead to whole-body insulin resistance by disrupting normal insulin-regulated glucose uptake and glycogen storage in skeletal muscle. A new understanding has been cultivated in the past 5 to 10 years that adipocytes and macrophages (resident or bone marrow-derived) in adipose tissue of obese animals and humans are activated in a pro-inflammatory capacity and secrete insulin resistance-inducing factors. However, only recently have fatty acids themselves been identified as agents that engage toll-like receptors of the innate immunity systems of macrophages, adipocytes and muscle cells to trigger pro-inflammatory responses. This review summarizes our observations that fatty acids evoke the release of pro-inflammatory factors from macrophages that consequently induce insulin resistance in muscle cells.


Assuntos
Ácidos Graxos/fisiologia , Resistência à Insulina , Macrófagos/fisiologia , Músculo Esquelético/fisiopatologia , Animais , Humanos , Músculo Esquelético/patologia , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA