RESUMO
STUDY QUESTION: Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? SUMMARY ANSWER: VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. WHAT IS KNOWN ALREADY: Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. STUDY DESIGN, SIZE, DURATION: Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). PARTICIPANTS/MATERIALS, SETTING, METHODS: Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and fetal development. MAIN RESULTS AND THE ROLE OF CHANCE: Western blot analysis revealed the presence of VEGF121 and 165 isoforms in human uterine fluid. Time-lapse microscopy analysis revealed that VEGF (n = 22) and VEGF121 (n = 23) treatment significantly reduced the preimplantation mouse embryo time to cavitation (P < 0.05). VEGF and VEGF165 increased both blastocyst cell number (VEGF n = 27; VEGF165 n = 24: P < 0.001) and outgrowth (n = 15/treatment: 66 h, P < 0.001; 74, 90, 98 and 114 h, P < 0.01) on fibronectin compared with control. Furthermore, rhVEGF improved implantation rates and enhanced fetal limb development (P < 0.05). LIMITATIONS, REASONS FOR CAUTION: Due to the nature of this work, embryo development and implantation was only examined in the mouse. WIDER IMPLICATIONS OF THE FINDINGS: The absence or reduction in levels of VEGF during the preimplantation period likely affects key events during embryo development, implantation and placentation. The potential for improvement of clinical IVF outcomes by the addition of VEGF to human embryo culture media needs further investigation. STUDY FUNDING/COMPETING INTERESTS: This study was supported by a University of Melbourne Early Career Researcher Grant #601040, the NHMRC (L.A.S., Program grant #494802; Fellowship #1002028; N.J.H., Fellowship # 628927; J.E.; project grant #1047756) and L.A.S., Monash IVF Research and Education Foundation. N.K.B. was supported by an Australian Postgraduate Award. Work at PHI-MIMR Institute was also supported by the Victorian Government's Operational Infrastructure Support Program. There are no conflicts of interest to declare.
Assuntos
Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Endométrio/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Meios de Cultura , Técnicas de Cultura Embrionária , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Masculino , Camundongos , Fator A de Crescimento do Endotélio Vascular/fisiologiaRESUMO
Recent evidence suggests that Semaphorin 3B (SEMA3B) is upregulated in severe preeclampsia, and a major driver of cytotrophoblast aberrations in this disease. Here we independently assess whether SEMA3B expression is altered in a large cohort of severe early onset preeclamptic placentas. We demonstrate that SEMA3B relative mRNA expression and copy number are not changed in PE placentas. We confirm this at the protein level by western blot. Interestingly, exposure of term trophoblasts or explants to hypoxia induced a significant down regulation of SEMA3B mRNA, but a trend towards increased SEMA3B protein expression. We conclude that SEMA3B mRNA and protein is not altered in severe early onset preeclamptic placentas.