RESUMO
This study aimed at investigating the effect of hydrolyzed soya lecithin; also called lysolecithin or lysophosphatidylcholine, on growth performance, caecal microbiota and fat depots in pre-breeding primiparous rabbits does. For this, 60 V-Line primiparous rabbits does (5-6 months) were used in a 30-day experiment. Does were allotted into three iso-nitrogenous iso-caloric dietary treatments (n = 20/group) as follows: (1) CON received 0% soya lecithin, (2) LECL group was fed a basal diet supplemented with 0.5% soya lecithin and (3) LECH group was fed a basal diet supplemented with 1% soya lecithin. Growth performance indices were measured, caecum samples were collected for measurement of specific bacteria via qPCR, and several fat depots including periovarian fat were sampled for adipocyte morphometry and fatty acid profiling. Statistical analysis was performed using GLM procedures of SAS v9.4. Soya lecithin increased feed intake (p < 0.05). The abundance of caecal Bifidobacteria species, Ruminococcus species and phylum Butryvibrio-specific genes increased (p < 0.05) in rabbits receiving soya lecithin in their diet, soya lecithin increased the level of polyunsaturated fatty acids in subcutaneous and perirenal fat (p < 0.05) and increased the level of monounsaturated fatty acids in periovarian fat (p < 0.05); additionally, the adipocyte area increased in periovarian and perirenal fat (p < 0.05). In conclusion, soya lecithin at a dose of 0.5% increased feed intake and energy storage in adipocytes and improved the fatty acid profile of periovarian fat.
RESUMO
The transition from pregnancy to lactation is the most challenging period for high-producing dairy cows. The liver plays a key role in biological adaptation during the peripartum. Prior works have demonstrated that hepatic glucose synthesis, cholesterol metabolism, lipogenesis, and inï¬ammatory response are increased or activated during the peripartum in dairy cows; however, those works were limited by a low number of animals used or by the use of microarray technology, or both. To overcome such limitations, an RNA sequencing analysis was performed on liver biopsies from 20 Holstein cows at 7 ± 5d before (Pre-P) and 16 ± 2d after calving (Post-P). We found 1,475 upregulated and 1,199 downregulated differently expressed genes (DEG) with a false discovery rate adjusted P-value < 0.01 between Pre-P and Post-P. Bioinformatic analysis revealed an activation of the metabolism, especially lipid, glucose, and amino acid metabolism, with increased importance of the mitochondria and a key role of several signaling pathways, chiefly peroxisome proliferators-activated receptor (PPAR) and adipocytokines signaling. Fatty acid oxidation and gluconeogenesis, with a likely increase in amino acid utilization to produce glucose, were among the most important functions revealed by the transcriptomic adaptation to lactation in the liver. Although gluconeogenesis was induced, data indicated decrease in expression of glucose transporters. The analysis also revealed high activation of cell proliferation but inhibition of xenobiotic metabolism, likely due to the liver response to inflammatory-like conditions. Co-expression network analysis disclosed a tight connection and coordination among genes driving biological processes associated with protein synthesis, energy and lipid metabolism, and cell proliferation. Our data confirmed the importance of metabolic adaptation to lipid and glucose metabolism in the liver of early Post-P cows, with a pivotal role of PPAR and adipocytokines.
Assuntos
Bovinos/metabolismo , Fígado/metabolismo , Prenhez/metabolismo , Transcriptoma , Adaptação Fisiológica , Animais , Biologia Computacional , Feminino , Gluconeogênese , Lactação , Metabolismo dos Lipídeos/fisiologia , Período Periparto , Período Pós-Parto/metabolismo , Gravidez , Regulação para CimaRESUMO
The objective of this study was to compare the transcription of gene markers for gastrointestinal (GI) epithelial cells, including fatty acid binding protein 2 (FABP2) and cytokeratin 8 (KRT8), and tight junction complex genes (TJP1, CLDN1, CLDN4) in fecal RNA against several GI tract tissue sections in dairy calves. Eight healthy Jersey calves were euthanized at 5 wk of age, and postmortem samples were collected from rumen, duodenum, jejunum, ileum, large intestine, cecum, and feces for total RNA isolation. Tissues and fecal samples were immediately frozen in liquid nitrogen until RNA isolation. A real-time quantitative PCR analysis was performed using a single standard curve composited of equal amounts of all samples, including cDNA from fecal and GI tract tissues. The mRNA expression of the tight junctions TJP1, CLDN1, and CLDN4 was greater in fecal RNA compared with lower GI tract tissues (i.e., duodenum, jejunum, ileum, large intestine, and cecum). Similar to fecal RNA, rumen tissue had greater expression of tight junctions CLDN1 and CLDN4 than lower GI tract tissues. Similarly, rumen tissue had greater expression of TPJ1 than all lower GI tract tissues except duodenum. The expression of TJP1 and CLDN4 was greater in fecal RNA than in rumen tissue; in contrast, CLDN1 mRNA expression was greater in rumen tissue than in the fecal RNA. The expression of FABP2 was greater in duodenum in comparison to all tissue except ileum. The mRNA expression of FABP2 in fecal samples was similar to jejunum and ileum. The expression of KRT8 in fecal samples was similar to duodenum, large intestine, and cecum. The fecal RNA had a greater expression of KRT8 in comparison to jejunum and ileum. The rumen tissue had the lowest mRNA expression of KRT8. The expression levels of FABP2, KRT8, and tight junction genes observed in fecal transcripts suggest that a considerable amount of RNA derived from GI tract epithelial cells can be detected in fecal RNA, which is in agreement with previous data in neonatal dairy calves and other biological models including humans, rodents, and primates. The greater expression of tight junctions in fecal RNA in comparison to sections of the low GI remains to be understood, and due to the importance of tight junctions in GI physiology, further clarification of this effect is warranted. The similarities in mRNA expression of FABP2 and KRT8 between fecal RNA and intestinal sections add up to the accumulating evidence that fecal RNA can be used to investigate molecular alterations in the GI tract of neonatal dairy calves. Further research in this area should include high-throughput transcriptomic analysis via RNA-seq to uncover novel molecular markers for specific sections of the GI tract of neonates.
Assuntos
Antígenos de Diferenciação/metabolismo , Biomarcadores/metabolismo , Bovinos/metabolismo , Trato Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , RNA/metabolismo , Animais , Bovinos/anatomia & histologia , Ceco/metabolismo , Células Epiteliais/metabolismo , Fezes , Trato Gastrointestinal/citologia , Íleo/metabolismo , Mucosa Intestinal/citologia , Intestino Grosso , Jejuno/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Rúmen/metabolismo , Junções Íntimas , TranscriptomaRESUMO
Inadequate dry matter intake only partially accounts for the decrease in milk protein synthesis during heat stress (HS) in dairy cows. Our hypothesis is that reduced milk protein synthesis during HS in dairy cows is also caused by biological changes within the mammary gland. The objective of this study was to assess the hypothesis via RNA-Seq analysis of mammary tissue. Herein, four dairy cows were used in a crossover design where HS was induced for 9 days in environmental chambers. There was a 30-day washout between periods. Mammary tissue was collected via biopsy at the end of each environmental period (HS or pair-fed and thermal neutral) for transcriptomic analysis. RNA-Seq analysis revealed HS affected >2,777 genes (false discovery rate-adjusted P value < 0.05) in mammary tissue. Expression of main milk protein-encoding genes and several key genes related to regulation of protein synthesis and amino acid and glucose transport were downregulated by HS. Bioinformatics analysis revealed an overall decrease of mammary tissue metabolic activity by HS (especially carbohydrate and lipid metabolism) and an increase in immune activation and inflammation. Network analysis revealed a major role of TNF, IFNG, S100A8, S100A9, and IGF-1 in inducing/controlling the inflammatory response, with a central role of NF-κB in the process of immunoactivation. The same analysis indicated an overall inhibition of PPARγ. Collectively, these data suggest HS directly controls milk protein synthesis via reducing the transcription of metabolic-related genes and increasing inflammation-related genes.
Assuntos
Resposta ao Choque Térmico/fisiologia , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/biossíntese , Transcriptoma , Animais , Metabolismo dos Carboidratos/genética , Bovinos , Estudos Cross-Over , Feminino , Inflamação/genética , Metabolismo dos Lipídeos/genética , Glândulas Mamárias Animais/imunologia , NF-kappa B/genética , PPAR gama/genética , RNA-SeqRESUMO
In bovine mammary tissue and cells, liver X receptor (LXR) regulates lipid synthesis mainly via transactivation of the transcription factor sterol regulatory element binding protein 1 (SREBP1). In the present work, we investigated the role of LXR in controlling lipid synthesis via transactivation of SREBP1 in goat primary mammary cells (GMEC). The GMEC were treated with a synthetic agonist of LXR, T0901317, and transactivation and transcription of SREBP1, expression of lipogenic genes, and fatty acid profiling and triacylglycerol (TAG) content of the cells were measured. A mild increase in the mRNA expression level of LXRα (NR1H3) was observed following treatment with different concentrations of T0901317, and a dose-dependent increase in mRNA and transactivation of SREBP1 was detected. Activation of LXR resulted in a significant increase in the mRNA expression of most of the measured genes related to de novo synthesis, desaturation, and transport of fatty acids; TAG synthesis; and transcription regulators. Compared with the control, total content of cellular TAG increased by more than 20% with T0901317 treatment. Furthermore, addition of T0901317 increased the proportion of unsaturated fatty acids (e.g., C16:1, C18:1, C20:1, and C22:1), and decreased the proportion of saturated fatty acids (e.g., C16:0, C18:0, C20:0, and C22:0). These results provide evidence that LXR regulates the expression and activity of SREBP1. Our results indicated that LXR participate in regulating the transcription of genes involved in milk fat synthesis in GMEC in an SREBP1-dependent fashion.
Assuntos
Células Epiteliais/metabolismo , Ácidos Graxos/biossíntese , Cabras/metabolismo , Receptores X do Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Adipogenia , Animais , Contagem de Células , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Insaturados/metabolismo , Feminino , Regulação da Expressão Gênica , Cabras/genética , Hidrocarbonetos Fluorados/farmacologia , Lipogênese , Sulfonamidas/farmacologia , Triglicerídeos/metabolismoRESUMO
Subclinical ketosis (SCK) may impair white blood cell (WBC) function and thus contribute to the risk of disease postpartum. This preliminary study investigated changes occurring in the immune system before disease onset to elucidate their role in the occurrence of SCK. A group of 13 Holstein dairy cows were housed in tie-stalls and retrospectively divided into 2 groups based on their levels of ß-hydroxybutyrate (BHB) measured in plasma between calving day and 35 d from calving (DFC). Levels of BHB <1.4 mmol/L were found in 7 cows (control cows, CTR group) and levels >1.4 mmol/L were found in 6 cows at ≥1 of 6 time points considered (cows with SCK, KET group). From -48 to 35 DFC, body condition score, body weight, dry matter intake, rumination time, and milk yield were measured, and blood samples were collected regularly to assess the hematochemical profile and test the WBC function by ex vivo challenge assays. Data were submitted for ANOVA testing using a mixed model for repeated measurements that included health status and time and their interactions as fixed effects. Compared with CTR cows, KET cows had more pronounced activation of the immune system (higher plasma concentrations of proinflammatory cytokines, myeloperoxidase, and oxidant species, and greater IFN-γ responses to Mycobacterium avium), higher blood concentrations of γ-glutamyl transferase, and lower plasma concentrations of minerals before calving. Higher levels of nonesterified fatty acids, BHB, and glucose were detected in KET cows than in CTR cows during the dry period. The effect observed during the dry period was associated with a reduced dry matter intake, reduced plasma glucose, and increased fat mobilization (further increases in nonesterified fatty acids and BHB) during early lactation. A reduced milk yield was also detected in KET cows compared with CTR. The KET cows had an accentuated acute-phase response after calving (with greater concentrations of positive acute-phase proteins and lower concentrations of retinol than CTR cows) and impaired liver function (higher blood concentrations of glutamate-oxaloacetate transaminase and bilirubin). The WBC of the KET cows, compared with CTR cows, had a reduced response to an ex vivo stimulation assay, with lower production of proinflammatory cytokines and greater production of lactate. These alterations in the WBC could have been driven by the combined actions of metabolites related to the mobilization of lipids and the occurrence of a transient unresponsive state against stimulation aimed at preventing excessive inflammation. The associations identified here in a small number of cows in one herd should be investigated in larger studies.
Assuntos
Doenças dos Bovinos/imunologia , Cetose/veterinária , Lactação , Ácido 3-Hidroxibutírico/sangue , Animais , Bilirrubina/sangue , Bovinos , Ácidos Graxos não Esterificados/sangue , Feminino , Glucose/metabolismo , Nível de Saúde , Inflamação/veterinária , Mediadores da Inflamação/sangue , Cetose/imunologia , Lipídeos , Leite , Período Pós-Parto , Estudos RetrospectivosRESUMO
Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to milk fat synthesis and lipid droplet formation, only LPIN1 and DGAT1 were upregulated by Ad-nSREBP1. Compared with the Ad-GFP, the cellular triacylglycerol content was higher and the percentage of C16:0 and C18:1 increased, whereas that of C16:1, C18:0, and C18:2 decreased in Ad-nSREBP1 cells. Overall, the data provide strong support for a central role of SREBP1 in the regulation of milk fat synthesis in goat mammary cells.
Assuntos
Células Epiteliais/metabolismo , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Adipogenia , Animais , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Cabras , Células HEK293 , Humanos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genéticaRESUMO
The objective of this study was to investigate if a reduced milking frequency altered the effect of dietary energy restriction on the hepatic transcriptome of grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n = 120) were milked twice daily (2×) from calving until 34 ± 6 days in milk (mean ± SD). Cows were then allocated to one of four treatments in a 2 × 2 factorial arrangement. Treatments consisted of two milking frequencies [2× or once daily (1×)] and two feeding levels for 3 wk: adequately fed (AF) or underfed (UF, 60% of AF). Liver tissue was biopsied from 12 cows per treatment after 3 wk of treatment, and the hepatic transcriptome was profiled with an Agilent 4 × 44k bovine microarray. Over 2,900 genes were differentially expressed in response to the energy restriction; however, no effects resulted from changes to milking frequency. This may indicate that after 3 wk of 1× milking, any changes to the liver transcriptome that may have occurred earlier have returned to normal. After 3 wk of energy restriction, gene expression patterns indicate that glucose-sparing pathways were activated, and gluconeogenesis was increased in UF cows. Genes involved in hepatic stress were upregulated in response to the energy restriction indicative of the pressure energy restriction places on liver function. Other pathways upregulated included "cytoskeletal remodeling," indicating that a 3 wk energy restriction resulted in molecular changes to assist tissue remodeling. Overall, 1× milking does not modify the hepatic transcriptome changes that occur in response to an energy restriction.
Assuntos
Restrição Calórica/veterinária , Indústria de Laticínios/métodos , Lactação/fisiologia , Fígado/metabolismo , Leite/fisiologia , Transcriptoma/fisiologia , Animais , Bovinos , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Análise em Microsséries/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterináriaRESUMO
Abomasal carnitine infusion during acute feed restriction increases hepatic fatty acid oxidation and decreases liver lipid in dairy cows. Eight mid-lactation Holstein cows were used in a replicated 4×4 Latin square design with 14-d periods. A 2×2 factorial arrangement was used to determine the effects of water infusion+ad libitum dry matter intake (DMI), water infusion+restricted DMI (50% of previous 5-d average), l-carnitine infusion (20 g/d)+ad libitum DMI, or l-carnitine infusion+restricted DMI. Liver RNA from 7 healthy cows was used for transcriptome profiling using a bovine microarray. An ANOVA with a false discovery rate was used to identify treatment and interaction effects. A substantial transcriptome change was observed only with DMI restriction, resulting in 312 (155 downregulated, 157 upregulated) differentially expressed genes. Quantitative PCR was performed to verify microarray data and measure expression of additional genes not present on the microarray. The quantitative PCR data confirmed the effect of feed restriction but not of l-carnitine treatment. Feed restriction increased expression of GPX3 and of genes associated with gluconeogenesis (PC, PDK4), inflammation (SAA3), and signaling (ADIPOR2). In contrast, feed restriction downregulated BBOX, a key for l-carnitine biosynthesis, and the transcription factor HNF4A. The bioinformatics functional analysis of genes affected by DMI restriction uncovered biosynthesis of cholesterol and energy generation by mitochondrial respiration as the most relevant and inhibited functions. The data also indicated an increase of flux toward gluconeogenesis. We interpreted those results as a likely response of the liver to spare energy and provide glucose for the lactating mammary gland during feed deprivation.
Assuntos
Carnitina/administração & dosagem , Privação de Alimentos/fisiologia , Fígado/química , Fosforilação Oxidativa , Esteróis/biossíntese , Transcriptoma/genética , Animais , Bovinos , Metabolismo Energético , Feminino , Gluconeogênese/genética , Gluconeogênese/fisiologia , Lactação/fisiologia , Metabolismo dos Lipídeos/genética , Análise em Microsséries/veterinária , Mitocôndrias Hepáticas/metabolismoRESUMO
Cows experience some degree of negative energy balance and immunosuppression around parturition, making them vulnerable to metabolic and infectious diseases. The effect of prepartum feeding of diets to meet (control, 1.34 Mcal/kg of dry matter) or exceed (overfed, 1.62 Mcal/kg of dry matter) dietary energy requirements was evaluated during the entire dry period (â¼45 d) on blood polymorphonuclear neutrophil function, blood metabolic and inflammatory indices, and milk production in Holstein cows. By design, dry matter intake in the overfed group (n=9) exceeded energy requirements during the prepartum period (-4 to -1 wk relative to parturition), resulting in greater energy balance when compared with the control group (n=10). Overfed cows were in more negative energy balance during wk 1 after calving than controls. No differences were observed in dry matter intake, milk yield, and milk composition between diets. Although nonesterified fatty acid concentration pre- (0.138 mEq/L) and postpartum (0.421 mEq/L) was not different between diets, blood insulin concentration was greater in overfed cows prepartum (16.7 µIU/mL) compared with controls pre- and postpartum (â¼3.25 µIU/mL). Among metabolic indicators, concentrations of urea (4.63 vs. 6.38 mmol/L), creatinine (100 vs. 118 µmol/L), and triacylglycerol (4.0 vs. 8.57 mg/dL) in overfed cows were lower prepartum than controls. Glucose was greater pre- (4.24 vs. 4.00 mmol/L) and postpartum (3.49 vs. 3.30 mmol/L) compared with control cows. Among liver function indicators, the concentration of bilirubin increased by 2 to 6 fold postpartum in control and overfed cows. Phagocytosis capacity of polymorphonuclear neutrophils was lower prepartum in overfed cows (32.7% vs. 46.5%); phagocytosis in the control group remained constant postpartum (50%) but it increased at d 7 in the overfed group to levels similar to controls (48.4%). Regardless of prepartum diet, parturition was characterized by an increase in nonesterified fatty acid and liver triacylglycerol, as well as blood indices of inflammation (ceruloplasmin and haptoglobin), oxidative stress (reactive oxygen metabolites), and liver injury (glutamic oxaloacetic transaminase). Concentrations of the antioxidant and anti-inflammatory compounds vitamin A, vitamin E, and ß-carotene decreased after calving. For vitamin A, the decrease was observed in overfed cows (47.3 vs. 27.5 µg/100 mL). Overall, overfeeding energy and higher energy status prepartum led to the surge of insulin and had a transient effect on metabolism postpartum.
Assuntos
Bovinos/sangue , Bovinos/imunologia , Dieta/veterinária , Neutrófilos/imunologia , Período Periparto/imunologia , Período Periparto/fisiologia , Animais , Bilirrubina/sangue , Bovinos/metabolismo , Ingestão de Energia , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Feminino , Tolerância Imunológica , Inflamação , Insulina , FagocitoseRESUMO
With growing concern about including unconventional dietary protein sources in poultry diets to substitute the protein sources that are essential for human consumption such as soybean meal, Azolla leaf meal (ALM) has grown in popularity. In our prior experiment, ALM was used at inclusion rates of 5 and 10%. Five per cent inclusion of ALM increased broiler chicken growth performance, the concentration of cecal propionic acid, and activation of skeletal muscle p70S6 Kinase1 (p70S6K1) without having detrimental effects on the meat quality. Those results prompted us to further evaluate the effect of the same inclusion rates of ALM on phase feeding and intestine and liver health of the broiler chicks. The current study hypothesis is that dietary ALM positively affects phase feeding, intestinal morphology and p70S6K1 activation, cecal microbial gene expression, and improves the liver energy status. For this, we enrolled 135 one-day-old broiler chicks and collected growth performance data (starter, grower, and finisher stages) and samples of the gastrointestinal tract to analyse the morphology of the villi, immune-related organs, mucin, and abundance of intestinal p70S6K1. Cecal bacterial species were analysed using qPCR and liver samples were collected to analyse adenosine monophosphate (AMP) and ATP content and selected oxidative stress biomarkers. ALM increased BW and feed intake during the starter and grower phases but did not affect the feed conversion ratio. Liver oxidative stress and AMP: ATP ratio increased in chickens fed on a diet containing 10% ALM (AZ10; P < 0.05). Jejunum villi length and abundance of duodenal neutral mucin increased but villi of the ileum decreased in chickens fed on a diet containing 5% ALM (AZ5), while lymphoid follicle areas of the cecal tonsils decreased with both doses of ALM. Activation of p70S6K1 increased with AZ10 in the duodenum and AZ5 in the jejunum. In the gut, the family of Enterobacteriaceae decreased with both ALM doses. In conclusion, our results indicate an overall positive effect of dietary inclusion of ALM in the broiler chicken diet via its positive effect on intestinal morphology and function; however, a negative effect on the liver was observed with 10% ALM.
Assuntos
Microbioma Gastrointestinal , Microbiota , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análiseRESUMO
Rapidly growing human populations and the increased need for high nutritive value meat in terms of low fat, high protein, and low sodium content are the driving reasons for the increase in rabbit meat production. However, dietary protein alternatives to sustain rabbit meat production, without competing with humans for strategic crops are needed. Therefore, the current study was conducted to investigate the effect of Azolla leaf meal (ALM) as a dietary protein source on growth performance, meat quality, and abundance and activation of Ribosomal protein S6 kinase ß1 (p70S6K1), a downstream target of mammalian target of rapamycin signalling pathway and, thus, a key player in the regulation of protein synthesis and muscle mass. For this purpose, 60 weaned male V-Line rabbits were blocked for the initial BW and randomly allotted into four dietary treatments, with 15 replicate per treatment (n = 15/group) as follows: (1) CON group was fed on basal diet contains 0% of ALM, (2) AZ10 group fed on diet containing 10% ALM, (3) AZ20 group fed on diet containing 20% ALM, and (4) AZ30 group fed on diet containing 30% ALM. Rabbits were raised individually, and the experimental period was 42 days. At the end of the experiment, rabbits were euthanised and blood and skeletal muscle samples were collected. Body weight and BW gain were the highest in AZ10 group (P = 0.01), while feed intake was the highest in AZ30 (P = 0.01), feed conversion ratio was the lowest in AZ10 and highest in AZ30 (P = 0.01). Dressing % was the highest in AZ10 and lowest in AZ30 groups (P = 0.01). Muscle cross-sectional area was low in both AZ20 and AZ30 groups compared to CON (P = 0.01). The lysine concentration of Longissimus lumborum muscle increased (P = 0.03) while isoleucine tended to decrease in AZ10 vs CON (P = 0.09). The phosphorylation ratio of skeletal muscle p70S6K1 increased in AZ10 and AZ20 groups (P = 0.05). Therefore, ALM could be included in a growing rabbit diet, up to 10%, while higher doses negatively alter production performance, meat quality, and feed efficiency of growing rabbits.
Assuntos
Ração Animal , Composição Corporal , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Carne/análise , Músculo Esquelético/metabolismo , Coelhos , Proteínas Quinases S6 Ribossômicas/metabolismoRESUMO
Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists increase fatty acid oxidation in liver of nonruminants. If similar effects occur in dairy cattle, enhanced hepatic oxidative capacity could decrease circulating nonesterified fatty acids and hepatic triacylglycerol accumulation in periparturient cows. The objectives of this study were 1) to determine whether partitioning of fatty acid metabolism by liver slices from weaned Holstein calves treated with PPARalpha agonists in vivo is altered compared with partitioning by liver slices from control (untreated) calves, and 2) to measure in vitro metabolism of palmitate and oleate by bovine liver slices and relate these to mRNA abundance for key enzymes. Weaned male Holstein calves (7 wk old; n=15) were assigned to 1 of 3 groups for a 5-d treatment period: control (untreated), clofibrate (62.5 mg/kg of BW), or fish oil (250 mg/kg of BW). Calves treated with clofibrate consumed less dry matter. Body weight, liver weight, liver weight:body weight ratio, blood nonesterified fatty acids, beta-hydroxybutyrate, and liver composition were not significantly different among treatments. Liver slices were incubated for 2, 4, and 8 h to determine in vitro conversion of [1-(14)C] palmitate and [1-(14)C] oleate to CO(2), acid-soluble products, esterified products, and total metabolism. In liver slices incubated for 8 h, conversion of palmitate to CO(2) was greater for calves treated with clofibrate compared with control calves or calves treated with fish oil. Conversion of palmitate to esterified products, total palmitate metabolism, and metabolism of oleate were not different among treatments. Conversion of palmitate to CO(2) was greater than that from oleate for all treatments, but rates of total metabolism did not differ. Clofibrate increased or tended to increase liver expression of several PPARalpha target genes involved in fatty acid oxidation (e.g., ACADVL, ACOX1, CPT1A), whereas fish oil did not significantly affect genes associated with fatty acid oxidation but tended to increase DGAT1. Overall, our data indicated that bovine liver responded to clofibrate treatment but not fish oil, although increases in hepatic lipid metabolism were much less than those reported in rodents treated with clofibrate or fish oil. Applications of PPARalpha agonists may be of interest to increase the rate of hepatic fatty acid oxidation and decrease triacylglycerol accumulation in periparturient dairy cows.
Assuntos
Clofibrato/farmacologia , Ácidos Graxos/metabolismo , Óleos de Peixe/farmacologia , Hipolipemiantes/farmacologia , Fígado/efeitos dos fármacos , PPAR alfa/agonistas , Animais , Bovinos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipídeos/análise , Fígado/química , Fígado/metabolismo , Glicogênio Hepático/análise , Masculino , Ácido Oleico/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Palmitatos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/análiseRESUMO
Conjugated linoleic acid (CLA) is known for its multiple benefits including improvement of growth, increasing lean mass, and anti-carcinogenic effects. However, when used in long-term supplementations CLA does not improve semen parameters in boar and bull and reduces fertility in Japanese quails. The content of unsaturated fatty acids in dietary lipids plays a significant role in spermatogenesis owning the high proportion of unsaturated fatty acids in plasma membrane of sperms. Whether CLA plays a role in testicular tissue and epididymal fat is still unknown. Therefore, in this study we hypothesize that long-term supplementation of equal proportion of CLA isomer mix (c9,t11-CLA and t10,c12- CLA) in rabbit bucks might alter male reproductive potentials. Twelve V-Line weaned male rabbits were used in 26 weeks trial, rabbits were individually raised and randomly allocated into three dietary groups. Control group (CON) received a basal diet, a group received 0.5% CLA (CLA 0.5%), and a group received 1% CLA (CLA 1%). Rabbits were euthanized at the end of the trial and several parameters were evaluated related to growth, semen quality, and testicular and epididymal tissue histopathology and transcriptome. The long-term supplementation of CLA increased feed intake by 5% and body weight by 2-3%. CLA 1% decreased sperm progressive motility. In testicular tissue L-carnitine and α-tocopherol were decreased by CLA supplementation. In epididymal fat, CLA tended to decrease concentration of polyunsaturated fatty acids, the expression of SCD5 gene was upregulated by CLA 1% and CASP3 gene was upregulated by CLA 0.5%. Transcription of PPARG was downregulated by CLA. Feeding 1% CLA also decreased testicular epithelial thickness. Long-term supplementation of CLA modestly enhanced male rabbit growth, but negatively impacted male reproduction, especially at high dose of CLA.
Assuntos
Apoptose , Ácidos Linoleicos Conjugados , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Coelhos , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Carnitina/metabolismo , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
The interest in biodiesel production from oil-bearing seeds rather than soybean necessitates the scientific validation of other good quality protein sources that could substitute soybean meal in animal diets, particularly, broiler chickens where soybean meal constitutes a large portion of their diet. Therefore, the present study was conducted to investigate the effect of sun-dried Azolla leaf meal (ALM) as an unconventional dietary protein source in broiler chicken diet on growth performance, meat quality, skeletal muscle cell growth and protein synthesis through regulation of ribosomal protein S6 kinase (p70S6 kinase α). A total of 120 male Ross 308 broiler chicks were randomly allocated to three dietary treatments. Each treatment had four cages (i.e. replicates) with 10 birds/cage. The control group was fed with a corn-soy-based diet, the AZ5 group was supplemented with 5% ALM and the AZ10 group was supplemented with 10% ALM for 37 days. A 5-day trial was also conducted to measure the apparent nutrient digestibility. Growth performance parameters were measured weekly. At the end of the experiment, 12 birds from each group (3/cage) were euthanized and used for samplings. Inclusion of ALM tended to improve BW gain (P = 0.06) and increased feed intake (P < 0.01). Additionally, ALM decreased the percentage of breast meat cooking loss linearly (P < 0.01). In addition, ALM at a dose of 5% increased the production of propionate in the cecum (P = 0.01). Activation of breast muscle p70S6 kinase was higher when ALM was included in a dose-dependent manner (P < 0.01). The inclusion of ALM increased breast meat redness (P < 0.01); however, the lightness was within the normal range in all groups. Findings from our study suggest that ALM could be included in a broiler chicken diet up to 5% without any major negative effect on meat quality or performance, and it regulates muscle protein synthesis through activation of mammalian target of rapamycin/6S kinase signaling.
Assuntos
Ração Animal , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Carne/análise , Músculo Esquelético , Distribuição AleatóriaRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0226070.].
RESUMO
Studying long-chain fatty acid (LCFA) effects on gene network expression in bovine cells could provide useful information for future practical applications. An optimized in vitro system that does not require tissue collection or cell isolation could fill a niche in the study of PPARalpha activity in ruminants. Specific aims were to optimize culture conditions in Madin-Darby bovine kidney (MDBK) cells to achieve maximal mRNA expression of known peroxisome proliferator-activated receptor-alpha (PPARalpha) target genes using palmitate (16:0) as a representative LCFA. Variables included length of incubation time, use of albumin-bound (4:1 molar proportion) 16:0 (A16:0), or addition of insulin. A first time-course experiment tested culturing cells in Dulbecco's modified Eagle's medium with 150 microM PPAR ligand Wy-14643 (WY) and A16:0. A second experiment tested the effects of albumin and insulin using 150 microM of 16:0 without albumin or insulin (-Alb/-Ins), 16:0 without albumin plus 5 mg/L of bovine insulin (-Alb/+Ins), A16:0 without insulin (+Alb/-Ins), or a control. A third experiment was a preliminary metabolic characterization of cells and assessed intracellular lipid droplet formation after treatment with 150 microM of 16:0 or an ethanol control. For all experiments, cells were harvested at 0, 6, 12, 18, and 24 h posttreatment. In experiments 1 and 2, mRNA expression was assessed by quantitative PCR of selected PPARalpha target genes as well as PPARalpha coactivators (ACOX1, CPT1A, ACADVL, ACSL1, PPARA, PPARGC1A, LPIN1). In experiment 1, there was a linear increase in mRNA expression of CPT1A (approximately 500%) and ACSL1 (50 to 200%) by 6 h of incubation with both WY and A16:0. The LPIN1 mRNA increased by >100% by 6 h only with A16:0. Further, there was a linear increase in expression of PPARA (approximately 100%) with A16:0 through 24 h of incubation. In experiment 2, insulin increased, and coupling LCFA with albumin tended to delay the response in expression of CPT1A and ACSL1 to 16:0. Data indicated a toxic effect of 150 microM free 16:0 as assessed by cell counts after 12 h of incubation. In experiment 3, MDBK cells appeared to use glucose and AA as energy sources and were able to secrete triglycerides. In addition, MDBK cells cultured with 150 microM of 16:0 had a substantial uptake of LCFA and synthesized intracellular lipid droplets. Overall, results indicated that a 6-h incubation with free LCFA and addition of insulin was suitable to detect marked effects on mRNA expression of PPARalpha target genes in MDBK cells.
Assuntos
Ácidos Graxos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes/genética , Rim/citologia , Rim/metabolismo , PPAR alfa/metabolismo , Ácido Palmítico/metabolismo , Animais , Bovinos , Técnicas de Cultura de Células , Proliferação de Células , Insulina/metabolismo , Metabolismo dos Lipídeos , Soroalbumina Bovina/metabolismo , Fatores de TempoRESUMO
Dietary lipid supplements affect mammary lipid metabolism partly through changes in lipogenic gene expression. Quantitative PCR (qPCR) is a sensitive, reliable, and accurate technique for gene expression analysis. However, variation introduced in qPCR data by analytical or technical errors needs to be accounted for via normalization using appropriate internal control genes (ICG). Objectives were to mine individual bovine mammary microarray data on >13,000 genes across 66 cows from 2 independent studies to identify the most suitable ICG for qPCR normalization. In addition to unsupplemented control diets, cows were fed saturated or unsaturated lipids for 21 d or were infused with supplements (butterfat, conjugated linoleic acid mixture, long-chain fatty acids) into the abomasum to modify milk fat synthesis and fatty acid profiles. We identified 49 genes that did not vary in expression across the 66 samples. Subsequent gene network analysis revealed that 22 of those genes were not co-regulated. Among those COPS7A, CORO1B, DNAJC19, EIF3K, EMD, GOLGA5, MTG1, UXT, MRPL39, GPR175, and MARVELD1 (sample/reference expression ratio = 1 +/- 0.1) were selected for PCR analysis upon verification of goodness of BLAT/BLAST sequence and primer design. Relative expression of B2M, GAPDH, and ACTB, previously used as ICG in bovine mammary tissue, was highly variable (0.9 +/- 0.6) across studies. Gene stability analysis via geNorm software uncovered MRPL39, GPR175, UXT, and EIF3K as having the most stable expression ratio and, thus, suitable as ICG. Analysis also indicated that use of 3 ICG was most appropriate for calculating a normalization factor. Overall, the geometric average of MRPL39, UXT, and EIF3K is ideal for normalization of mammary qPCR data in studies involving lipid supplementation of dairy cows. These novel ICG could be used for normalization in similar studies as alternatives to the less-reliable ACTB, GAPDH, or B2M.
Assuntos
Suplementos Nutricionais , Lactação , Lipídeos/administração & dosagem , Glândulas Mamárias Animais/metabolismo , Reação em Cadeia da Polimerase/veterinária , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Genes/genética , Lipogênese/genética , RNA Mensageiro/metabolismoRESUMO
Several long-chain fatty acids (LCFA) are natural ligands of nonruminant peroxisome proliferator-activated receptor-gamma (PPARG), which, along with its lipogenic target genes, is upregulated in bovine mammary tissue during lactation. Thus, PPARG might represent an important control point of bovine milk fat synthesis. We tested lipogenic gene network expression via quantitative PCR of 19 genes in bovine mammary epithelial cells cultured with 16:0, 18:0, cis-9 18:1, trans-10 18:1, trans-10,cis-12 18:2 [t10c12 conjugated linoleic acid (CLA)], 20:5, ethanol (control), and the PPARG agonist rosiglitazone (ROSI). Triplicate cultures were maintained for 12 h with 50 muM ROSI or 100 muM LCFA. Responses common to 16:0 and 18:0 relative to the control included significantly greater expression of INSIG1 (+298%, +92%), AGPAT6 (+137%, +169%), FABP3 (+755%, +338%), and FABP4 (+171%, 157%). These were coupled with greater intracellular lipid droplet formation and mRNA of ACSS2, LPIN1, SCD, and SREBF2 in response to 16:0, and greater DGAT1 and THRSP with 18:0. Trans-10 18:1 and t10c12 CLA reduced expression of FASN (-60%, -31%), SCD (-100%, -357%), and SREBF1 (-49%, -189%). Furthermore, t10c12 CLA downregulated ACSS2, FABP3, INSIG1, SREBF2, and THRSP expression. Expression of SREBF1 was lower with cis-9 18:1 (-140%) and 20:5 (-125%) compared with the control. This latter LCFA also decreased SCD, SREBF2, and LPL expression. No effects of LCFA or ROSI on PPARG were observed, but ROSI upregulated (+39% to +269%) expression of ACACA, FASN, LPIN1, AGPAT6, DGAT1, SREBF1, SREBF2, and INSIG1. Thus, these genes are putative PPARG target genes in bovine mammary cells. This is the first report showing a direct effect of trans-10 18:1 on bovine mammary cell lipogenic gene expression. The coordinated upregulation of lipogenic gene networks in response to ROSI and saturated LCFA offers support for PPARG activation in regulating bovine milk fat synthesis.
Assuntos
Bovinos/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , PPAR gama/metabolismo , Animais , Células Cultivadas , Ácidos Graxos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Lipogênese/genética , Palmitatos/farmacologiaRESUMO
The relationship between inflammation and general health conditions in dairy cows and the link between inflammation, liver function, and fertility are poorly understood. To clarify these relationships, 120 multiparous dairy cows were followed throughout an entire lactation. Blood samples were collected during the first month of lactation for a metabolic profile, and milk yield, disease occurrence, and fertility parameters were monitored during the entire lactation. Twenty-four cows were culled, and another 19 were excluded because they had serious problems after 30 d in milk (DIM) and before the first insemination. The remaining 77 cows were pregnant at the end of lactation and were retrospectively grouped into quartiles based on liver activity index (LAI), which is based on plasma negative acute phase proteins. Cows in the lower (LO) and intermediate lower (INLO) quartiles of LAI had more severe inflammations with high concentrations of haptoglobin (0.77 and 0.61 g/L) and globulin (42.5 and 39.0 g/L), respectively, during the first week of lactation compared with cows in the upper (UP) and intermediate upper (INUP) quartiles of LAI (haptoglobin: 0.28 and 0.45 g/L, and globulin: 34.2 and 36.9 g/L, respectively). At 7 DIM, the cows in LO and INLO had greater bilirubinemia (8.7 and 10.5 vs. 6.3 microM/L in UP) and lower blood urea (3.5 and 3.7 vs. 4.1 mM in UP). The INLO group exhibited more days open (139 vs. 93) and services per pregnancy (2.68 vs. 1.65), but lower milk yield (38.3 vs. 40.8 kg/d at 28 DIM) compared with UP. The LO group did not have a significantly lower fertility status, but presented the lowest milk yield (34.1 kg/d at 28 DIM). Our data suggest that cows with lower LAI scores had a more pronounced inflammatory status during the first month of lactation, an impairment of usual hepatic functions (e.g., bilirubin clearance), and a larger negative energy balance. The same cows had poorer performance (lower milk yield and fertility) than cows with higher LAI scores. Overall data suggest that any effort to avoid the acute phase response in the transition period would be useful for optimizing the productive and reproductive performance of high-yielding dairy cows.