Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Psychiatry Neurosci ; 42(1): 48-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391101

RESUMO

BACKGROUND: The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. METHODS: We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on, to our knowledge, the most comprehensive study undertaken to date in 22q11.2DS models. The study was conducted in male mice. RESULTS: We found elevated postpubertal N-methyl-D-aspartate (NMDA) receptor antagonist-induced hyperlocomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR were resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. LIMITATIONS: The 22q11.2 microdeletion has incomplete penetrance in humans, and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors that may unmask latent psychopathology. CONCLUSION: The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the etiology of schizophrenia and other psychiatric disorders associated with the 22q11DS.


Assuntos
Envelhecimento/fisiologia , Síndrome de DiGeorge/fisiopatologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Filtro Sensorial/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Percepção Auditiva/fisiologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo de Sobressalto/fisiologia
2.
Neurosci Res ; 115: 1-4, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27876581

RESUMO

There is a great need for novel drug discovery for major mental illnesses, but multiple levels of challenges exist in both academia and industry, spanning from scientific understanding and institutional infrastructure to business risk and feasibility. The "valley of death," the large gap between basic scientific research and translation to novel therapeutics, underscores the need to restructure education and academic research to cultivate the fertile interface between academia and industry. In this opinion piece, we propose strategies to educate young trainees in the process of drug discovery and development, and prepare them for careers across this spectrum. In addition, we describe a research framework that considers the disease trajectory and underlying biology of mental disorders, which will help to address the core pathophysiology in novel treatments, and may even allow early detection and intervention. We hope that these changes will increase understanding among academia, industry, and government, which will ultimately improve the diagnosis, prognosis and treatment of mental disorders.


Assuntos
Descoberta de Drogas , Transtornos Mentais/tratamento farmacológico , Psicotrópicos/química , Pesquisa Translacional Biomédica , Descoberta de Drogas/educação , Descoberta de Drogas/métodos , Cooperação Internacional , Psicotrópicos/uso terapêutico
3.
Biol Psychiatry ; 76(2): 128-37, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24090792

RESUMO

BACKGROUND: Genome-wide scans have uncovered rare copy number variants conferring high risk of psychiatric disorders. The 15q13.3 microdeletion is associated with a considerably increased risk of idiopathic generalized epilepsy, intellectual disability, and schizophrenia. METHODS: A 15q13.3 microdeletion mouse model (Df[h15q13]/+) was generated by hemizygous deletion of the orthologous region and characterized with focus on schizophrenia- and epilepsy-relevant parameters. RESULTS: Df(h15q13)/+ mice showed marked changes in neuronal excitability in acute seizure assays, with increased propensity to develop myoclonic and absence-like seizures but decreased propensity for clonic and tonic seizures. Furthermore, they had impaired long-term spatial reference memory and a decreased theta frequency in hippocampus and prefrontal cortex. Electroencephalogram characterization revealed auditory processing deficits similar to those observed in schizophrenia. Gamma band power was increased during active state, but evoked gamma power following auditory stimulus (40 Hz) was dramatically reduced, mirroring observations in patients with schizophrenia. In addition, Df(h15q13)/+ mice showed schizophrenia-like decreases in amplitudes of auditory evoked potentials. Although displaying a grossly normal behavior, Df(h15q13)/+ mice are more aggressive following exposure to mild stressors, similar to what is described in human deletion carriers. Furthermore, Df(h15q13)/+ mice have increased body weight, and a similar increase in body weight was subsequently found in a sample of human subjects with 15q13.3 deletion. CONCLUSIONS: The Df(h15q13)/+ mouse shows similarities to several alterations related to the 15q13.3 microdeletion syndrome, epilepsy, and schizophrenia, offering a novel tool for addressing the underlying biology of these diseases.


Assuntos
Encéfalo/fisiopatologia , Transtornos Cromossômicos/genética , Modelos Animais de Doenças , Epilepsia/genética , Deficiência Intelectual/genética , Camundongos , Esquizofrenia/genética , Convulsões/genética , Animais , Comportamento Animal/fisiologia , Peso Corporal/genética , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Eletroencefalografia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA