Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661509

RESUMO

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

2.
Mem Inst Oswaldo Cruz ; 117: e210194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976280

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus associated with foetal malformations and neurological complications. The infection is usually associated with mild symptoms. The comparison between the allelic frequency of polymorphic genes in symptomatic infected individuals in the population can clarify the pathogenic mechanisms of ZIKV. During ZIKV infection, cytokines are produced and natural killer (NK) cells are recruited, whose activation depends on signaling pathways activated by specific receptors, such as killer cell immunoglobulin-like receptors (KIR). These molecules interact with human leukocyte antigen (HLA) class I ligands and are encoded by polymorphic genes. OBJECTIVES: This study aimed to evaluate the frequency of allelic variants of the genes encoding the KIR receptors and their HLA class I ligands in 139 symptomatic ZIKV-patients and 170 controls negative for the virus, and to evaluate the role of these variants for ZIKV susceptibility. METHODS: KIR and HLA class I genes were genotyped using the polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) technique. FINDINGS: No significant differences in the frequency distribution of KIRs and KIR-HLA in patients compared to controls were observed. MAIN CONCLUSIONS: KIR and its HLA ligands might play a minor role in ZIKV infection in the south and southeast Brazilian individuals.


Assuntos
Infecção por Zika virus , Zika virus , Brasil , Frequência do Gene/genética , Genótipo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ligantes , Receptores KIR/genética , Zika virus/genética , Infecção por Zika virus/genética
3.
Brain Behav Immun ; 97: 260-274, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390806

RESUMO

Zika virus (ZIKV) has the ability to cross placental and brain barriers, causing congenital malformations in neonates and neurological disorders in adults. However, the pathogenic mechanisms of ZIKV-induced neurological complications in adults and congenital malformations are still not fully understood. Gas6 is a soluble TAM receptor ligand able to promote flavivirus internalization and downregulation of immune responses. Here we demonstrate that there is a correlation between ZIKV neurological complications with higher Gas6 levels and the downregulation of genes associated with anti-viral response, as type I IFN due to Socs1 upregulation. Also, Gas6 gamma-carboxylation is essential for ZIKV invasion and replication in monocytes, the main source of this protein, which was inhibited by warfarin. Conversely, Gas6 facilitates ZIKV replication in adult immunocompetent mice and enabled susceptibility to transplacental infection. Our data indicate that ZIKV promotes the upregulation of its ligand Gas6, which contributes to viral infectivity and drives the development of severe adverse outcomes during ZIKV infection.


Assuntos
Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Camundongos , Placenta , Gravidez , Replicação Viral , Infecção por Zika virus/complicações
4.
Front Cell Infect Microbiol ; 12: 849017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677658

RESUMO

SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas M de Coronavírus , Antígeno Nuclear de Célula em Proliferação , Proteínas M de Coronavírus/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , SARS-CoV-2
5.
Front Immunol ; 13: 1033364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405692

RESUMO

This is the third year of the SARS-CoV-2 pandemic, and yet most children remain unvaccinated. COVID-19 in children manifests as mostly mild or asymptomatic, however high viral titers and strong cellular and humoral responses are observed upon acute infection. It is still unclear how long these responses persist, and if they can protect from re-infection and/or disease severity. Here, we analyzed immune memory responses in a cohort of children and adults with COVID-19. Important differences between children and adults are evident in kinetics and profile of memory responses. Children develop early N-specific cytotoxic T cell responses, that rapidly expand and dominate their immune memory to the virus. Children's anti-N, but not anti-S, antibody titers increase over time. Neutralization titers correlate with N-specific antibodies and CD8+T cells. However, antibodies generated by infection do not efficiently cross-neutralize variants Gamma or Delta. Our results indicate that mechanisms that protect from disease severity are possibly different from those that protect from reinfection, bringing novel insights for pediatric vaccine design. They also underline the importance of vaccination in children, who remain at risk for COVID-19 despite having been previously infected.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adulto , Criança , Memória Imunológica , Linfócitos T CD8-Positivos , Nucleocapsídeo , Anticorpos
6.
Virulence ; 13(1): 1031-1048, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734825

RESUMO

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Células HEK293 , Humanos , Lipídeos , Camundongos , Pandemias , Qualidade de Vida , Células Vero , Replicação Viral
7.
J Photochem Photobiol ; 8: 100072, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34635881

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is mainly transmitted by airborne droplets generated by infected individuals. Since this and many other pathogens are able to remain viable on inert surfaces for extended periods of time, contaminated surfaces play an important role in SARS-CoV-2 fomite transmission. Cosmetic products are destined to be applied on infection-sensitive sites, such as the lips and eyelids. Therefore, special biosafety precautions should be incorporated into the routine procedures of beauty parlors and shops. Indeed, innovative cosmetics companies are currently searching for disinfection protocols that ensure the customers' safety in makeup testing. Here, we propose an ultraviolet germicidal irradiation (UVGI) strategy that can be used to reduce the odds of COVID-19 fomite transmission by makeup testers. It is well-known that UVGI effectively inactivates pathogens on flat surfaces and clear fluids. However, ultraviolet-C (UVC) radiation at 254 nm penetrates poorly in turbid and porous materials, such as makeup and lipstick formulations. Thus, we investigated the virucidal effect of UVGI against SARS-CoV-2 deposited on such substrates and compared their performance to that of flat polystyrene surfaces, used as controls. Concentrated infectious SARS-CoV-2 inoculum (106 PFU/mL) deposited on lipstick and makeup powder was completely inactivated (>5log10 reduction) following UVC exposures at 1,260 mJ/cm2, while flat plastic surfaces required 10 times less exposure (126 mJ/cm2) to reach the same microbicidal performance. We conclude that UVGI comprises an effective disinfection strategy to promote biosafety for cosmetics testers. However, appropriate UVC dosimetry must be implemented to overcome inefficiencies caused by the optical properties of turbid materials in lipsticks and makeup powders.

8.
Gut Microbes ; 13(1): 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550892

RESUMO

Microbiota-derived molecules called short-chain fatty acids (SCFAs) play a key role in the maintenance of the intestinal barrier and regulation of immune response during infectious conditions. Recent reports indicate that SARS-CoV-2 infection changes microbiota and SCFAs production. However, the relevance of this effect is unknown. In this study, we used human intestinal biopsies and intestinal epithelial cells to investigate the impact of SCFAs in the infection by SARS-CoV-2. SCFAs did not change the entry or replication of SARS-CoV-2 in intestinal cells. These metabolites had no effect on intestinal cells' permeability and presented only minor effects on the production of anti-viral and inflammatory mediators. Together our findings indicate that the changes in microbiota composition of patients with COVID-19 and, particularly, of SCFAs do not interfere with the SARS-CoV-2 infection in the intestine.


Assuntos
COVID-19/virologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/virologia , Adulto , Idoso , Células CACO-2 , Colo/virologia , Células Epiteliais/virologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Carga Viral , Internalização do Vírus , Adulto Jovem
9.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834934

RESUMO

A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Vacinação , Adenoviridae , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Brasil/epidemiologia , COVID-19/prevenção & controle , Teste Sorológico para COVID-19 , Estudos de Coortes , Surtos de Doenças/estatística & dados numéricos , Feminino , Vetores Genéticos , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , RNA Viral , Vacinas de Produtos Inativados , Sequenciamento Completo do Genoma , Adulto Jovem
10.
Lancet Microbe ; 2(10): e527-e535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34258603

RESUMO

BACKGROUND: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. METHODS: We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). FINDINGS: In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT50s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT50s below limit of detection). Median VNT50s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests. INTERPRETATION: SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. FUNDING: São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Brasil/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Estados Unidos , Vacinação
11.
Viruses ; 12(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708342

RESUMO

Oropouche orthobunyavirus (OROV) is an emerging arbovirus with a high potential of dissemination in America. Little is known about the role of peripheral blood mononuclear cells (PBMC) response during OROV infection in humans. Thus, to evaluate human leukocytes susceptibility, permissiveness and immune response during OROV infection, we applied RNA hybridization, qRT-PCR and cell-based assays to quantify viral antigens, genome, antigenome and gene expression in different cells. First, we observed OROV replication in human leukocytes lineages as THP-1 monocytes, Jeko-1 B cells and Jurkat T cells. Interestingly, cell viability and viral particle detection are maintained in these cells, even after successive passages. PBMCs from healthy donors were susceptible but the infection was not productive, since neither antigenome nor infectious particle was found in the supernatant of infected PBMCs. In fact, only viral antigens and small quantities of OROV genome were detected at 24 hpi in lymphocytes, monocytes and CD11c+ cells. Finally, activation of the Interferon (IFN) response was essential to restrict OROV replication in human PBMCs. Increased expression of type I/III IFNs, ISGs and inflammatory cytokines was detected in the first 24 hpi and viral replication was re-established after blocking IFNAR or treating cells with glucocorticoid. Thus, in short, our results show OROV is able to infect and remain in low titers in human T cells, monocytes, DCs and B cells as a consequence of an effective IFN response after infection, indicating the possibility of leukocytes serving as a trojan horse in specific microenvironments during immunosuppression.


Assuntos
Infecções por Bunyaviridae/metabolismo , Leucócitos Mononucleares/virologia , Orthobunyavirus , RNA Viral/metabolismo , Citometria de Fluxo , Imunofluorescência , Genoma Viral/genética , Humanos , Microscopia Confocal , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Replicação Viral
12.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697943

RESUMO

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Assuntos
Betacoronavirus/fisiologia , Glicemia/metabolismo , Infecções por Coronavirus/complicações , Complicações do Diabetes/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Monócitos/metabolismo , Pneumonia Viral/complicações , Adulto , COVID-19 , Linhagem Celular , Infecções por Coronavirus/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Feminino , Glicólise , Humanos , Inflamação/complicações , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/virologia , Pandemias , Pneumonia Viral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2 , Transdução de Sinais
13.
Mem. Inst. Oswaldo Cruz ; 117: e210194, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394475

RESUMO

BACKGROUND Zika virus (ZIKV) is an emerging arbovirus associated with foetal malformations and neurological complications. The infection is usually associated with mild symptoms. The comparison between the allelic frequency of polymorphic genes in symptomatic infected individuals in the population can clarify the pathogenic mechanisms of ZIKV. During ZIKV infection, cytokines are produced and natural killer (NK) cells are recruited, whose activation depends on signaling pathways activated by specific receptors, such as killer cell immunoglobulin-like receptors (KIR). These molecules interact with human leukocyte antigen (HLA) class I ligands and are encoded by polymorphic genes. OBJECTIVES This study aimed to evaluate the frequency of allelic variants of the genes encoding the KIR receptors and their HLA class I ligands in 139 symptomatic ZIKV-patients and 170 controls negative for the virus, and to evaluate the role of these variants for ZIKV susceptibility. METHODS KIR and HLA class I genes were genotyped using the polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) technique. FINDINGS No significant differences in the frequency distribution of KIRs and KIR-HLA in patients compared to controls were observed. MAIN CONCLUSIONS KIR and its HLA ligands might play a minor role in ZIKV infection in the south and southeast Brazilian individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA