Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37976469

RESUMO

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/genética , Diferenciação Celular , Metilação de DNA , Progressão da Doença , Epigênese Genética , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
2.
BMC Microbiol ; 23(1): 35, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732713

RESUMO

BACKGROUND: Electronic cigarettes (ECs) have been widely used by young individuals in the U.S. while being considered less harmful than conventional tobacco cigarettes. However, ECs have increasingly been regarded as a health risk, producing detrimental chemicals that may cause, combined with poor oral hygiene, substantial inflammation in gingival and subgingival sites. In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, through mediation analysis, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. METHODS: We collected saliva and subgingival samples from 75 EC users and 75 non-users between 18 and 34 years in age and profiled their microbial compositions via 16S rRNA amplicon sequencing. We conducted raw sequence data processing, denoising and taxonomic annotations using QIIME2 based on the expanded human oral microbiome database (eHOMD). We then created functional annotations (i.e., KEGG pathways) using PICRUSt2. RESULTS: We found significant increases in α-diversity for EC users and disparities in ß-diversity between EC users and non-users. We also found significant disparities between EC users and non-users in the relative abundance of 36 microbial taxa in the saliva site and 71 microbial taxa in the subgingival site. Finally, we found that 1 microbial taxon in the saliva site and 18 microbial taxa in the subgingival site significantly mediated the effects of EC smoking on gingival inflammation. The mediators on the genus level, for example, include Actinomyces, Rothia, Neisseria, and Enterococcus in the subgingival site. In addition, we report significant disparities between EC users and non-users in the relative abundance of 71 KEGG pathways in the subgingival site. CONCLUSIONS: These findings reveal that continued EC use can further increase microbial dysbiosis that may lead to periodontal disease. Our findings also suggest that continued surveillance for the effect of ECs on the oral microbiome and its transmission to oral diseases is needed.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Gengivite , Microbiota , Humanos , Saliva , RNA Ribossômico 16S/genética , Nicotiana/genética , Inflamação
3.
Environ Health ; 22(1): 20, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823621

RESUMO

BACKGROUND: Limited data exists suggesting that cumulative exposure to air pollution in the form of fine particulate matter (aerodynamic diameter ≤ 2.5 µm [PM2.5]) may be associated with papillary thyroid carcinoma (PTC), although this relationship has not been widely established. This study aims to evaluate the association between PM2.5 and PTC and determine the subgroups of patients who are at the highest risk of PTC diagnosis. METHODS: Under IRB approval, we conducted a case-control study of adult patients (age ≥ 18) newly diagnosed with PTC between 1/2013-12/2016 across a single health care system were identified using electronic medical records. These patients were compared to a control group of patients without any evidence of thyroid disease. Cumulative PM2.5 exposure was calculated for each patient using a deep learning neural networks model, which incorporated meteorological and satellite-based measurements at the patients' residential zip code. Adjusted multivariate logistic regression was used to quantify the association between cumulative PM2.5 exposure and PTC diagnosis. We tested whether this association differed by gender, race, BMI, smoking history, current alcohol use, and median household income. RESULTS: A cohort of 1990 patients with PTC and a control group of 6919 patients without thyroid disease were identified. Compared to the control group, patients with PTC were more likely to be older (51.2 vs. 48.8 years), female (75.5% vs 46.8%), White (75.2% vs. 61.6%), and never smokers (71.1% vs. 58.4%) (p < 0.001). After adjusting for age, sex, race, BMI, current alcohol use, median household income, current smoking status, hypertension, diabetes, COPD, and asthma, 3-year cumulative PM2.5 exposure was associated with a 1.41-fold increased odds of PTC diagnosis (95%CI: 1.23-1.62). This association varied by median household income (p-interaction =0.03). Compared to those with a median annual household income <$50,000, patients with a median annual household income between $50,000 and < $100,000 had a 43% increased risk of PTC diagnosis (aOR = 1.43, 95%CI: 1.19-1.72), and patients with median household income ≥$100,000 had a 77% increased risk of PTC diagnosis (aOR = 1.77, 95%CI: 1.37-2.29). CONCLUSIONS: Cumulative exposure to PM2.5 over 3 years was significantly associated with the diagnosis of PTC. This association was most pronounced in those with a high median household income, suggesting a difference in access to care among socioeconomic groups.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Glândula Tireoide , Adulto , Humanos , Feminino , Material Particulado/análise , Poluentes Atmosféricos/análise , Câncer Papilífero da Tireoide/epidemiologia , Câncer Papilífero da Tireoide/induzido quimicamente , Estudos de Casos e Controles , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Disparidades Socioeconômicas em Saúde , Poluição do Ar/análise , Neoplasias da Glândula Tireoide/epidemiologia
4.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1056-L1062, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233789

RESUMO

Air-liquid interface (ALI) cultures are ex vivo models that are used extensively to study the epithelium of patients with chronic respiratory diseases. However, the in vitro conditions impose a milieu different from that encountered in the patient in vivo, and the degree to which this alters gene expression remains unclear. In this study we employed RNA sequencing to compare the transcriptome of fresh brushings of nasal epithelial cells with that of ALI-cultured epithelial cells from the same patients. We observed a strong correlation between cells cultured at the ALI and cells obtained from the brushed nasal epithelia: 96% of expressed genes showed similar expression profiles, although there was greater similarity between the brushed samples. We observed that while the ALI model provides an excellent representation of the in vivo airway epithelial transcriptome for mechanistic studies, several pathways are affected by the change in milieu.


Assuntos
Mucosa Nasal/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/metabolismo , Transcriptoma , Idoso , Ar , Fumar Cigarros/efeitos adversos , Meios de Cultura/química , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Anotação de Sequência Molecular , Mucosa Nasal/patologia , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Análise de Sequência de RNA , Conchas Nasais/metabolismo , Conchas Nasais/patologia
5.
Circ Res ; 123(11): 1232-1243, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30571462

RESUMO

RATIONALE: Protein S-nitros(yl)ation (SNO) has been implicated as an essential mediator of nitric oxide-dependent cardioprotection. Compared with males, female hearts exhibit higher baseline levels of protein SNO and associated with this, reduced susceptibility to myocardial ischemia-reperfusion injury. Female hearts also exhibit enhanced S-nitrosoglutathione reductase (GSNO-R) activity, which would typically favor decreased SNO levels as GSNO-R mediates SNO catabolism. OBJECTIVE: Because female hearts exhibit higher SNO levels, we hypothesized that GSNO-R is an essential component of sex-dependent cardioprotection in females. METHODS AND RESULTS: Male and female wild-type mouse hearts were subjected to ex vivo ischemia-reperfusion injury with or without GSNO-R inhibition (N6022). Control female hearts exhibited enhanced functional recovery and decreased infarct size versus control males. Interestingly, GSNO-R inhibition reversed this sex disparity, significantly reducing injury in male hearts, and exacerbating injury in females. Similar results were obtained with male and female GSNO-R-/- hearts using ex vivo and in vivo models of ischemia-reperfusion injury. Assessment of SNO levels using SNO-resin assisted capture revealed an increase in total SNO levels with GSNO-R inhibition in males, whereas total SNO levels remained unchanged in females. However, we found that although GSNO-R inhibition significantly increased SNO at the cardioprotective Cys39 residue of nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 3 in males, SNO-NADH dehydrogenase subunit 3 levels were surprisingly reduced in N6022-treated female hearts. Because GSNO-R also acts as a formaldehyde dehydrogenase, we examined postischemic formaldehyde levels and found that they were nearly 2-fold higher in N6022-treated female hearts compared with nontreated hearts. Importantly, the mitochondrial aldehyde dehydrogenase 2 activator, Alda-1, rescued the phenotype in GSNO-R-/- female hearts, significantly reducing infarct size. CONCLUSIONS: These striking findings point to GSNO-R as a critical sex-dependent mediator of myocardial protein SNO and formaldehyde levels and further suggest that different therapeutic strategies may be required to combat ischemic heart disease in males and females.


Assuntos
Álcool Desidrogenase/metabolismo , Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Álcool Desidrogenase/antagonistas & inibidores , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Estresse Oxidativo , Pirróis/farmacologia , Pirróis/uso terapêutico , Fatores Sexuais
6.
Tob Control ; 29(Suppl 2): s80-s89, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852817

RESUMO

OBJECTIVE: We investigated the effects of chronic waterpipe (WP) smoke on pulmonary function and immune response in a murine model using a research-grade WP and the effects of acute exposure on the regulation of immediate-early genes (IEGs). METHODS: WP smoke was generated using three WP smoke puffing regimens based on the Beirut regimen. WP smoke samples generated under these puffing regimens were quantified for nicotine concentration. Mice were chronically exposed for 6 months followed by assessment of pulmonary function and airway inflammation. Transcriptomic analysis using RNAseq was conducted after acute exposure to characterise the IEG response. These biomarkers were then compared with those generated after exposure to dry smoke (without water added to the WP bowl). RESULTS: We determined that nicotine composition in WP smoke ranged from 0.4 to 2.5 mg per puffing session. The lung immune response was sensitive to the incremental severity of chronic exposure, with modest decreases in airway inflammatory cells and chemokine levels compared with air-exposed controls. Pulmonary function was unmodified by chronic WP exposure. Acute WP exposure was found to activate the immune response and identified known and novel IEG as potential biomarkers of WP exposure. CONCLUSION: Chronic exposure to WP smoke leads to immune suppression without significant changes to pulmonary function. Transcriptomic analysis of the lung after acute exposure to WP smoke showed activation of the immune response and revealed IEGs that are common to WP and dry smoke, as well as pools of IEGs unique to each exposure, identifying potential biomarkers specific to WP exposure.


Assuntos
Genes Precoces , Pulmão/imunologia , Nicotina/análise , Fumar Cachimbo de Água/imunologia , Animais , Biomarcadores/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Cachimbos de Água
7.
BMC Pulm Med ; 20(1): 216, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787821

RESUMO

BACKGROUND: Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS: Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS: The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.


Assuntos
Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Fumaça/efeitos adversos , Cachimbos de Água , Adulto , Aerossóis , Cílios/efeitos dos fármacos , Feminino , Humanos , Pulmão , Masculino , Pessoa de Meia-Idade , Nicotina/farmacologia , Técnicas de Cultura de Órgãos , Nicotiana
8.
Respir Res ; 20(1): 190, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429757

RESUMO

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) have high oxidative stress associated with the severity of the disease. Nuclear factor erythroid-2 related factor 2 (Nrf2)-directed stress response plays a critical role in the protection of lung cells to oxidative stress by upregulating antioxidant genes in response to tobacco smoke. There is a critical gap in our knowledge about Nrf-2 regulated genes in active smokers and former-smokers with COPD in different cell types from of lungs and surrogate peripheral tissues. METHODS: We compared the expression of Nrf2 and six of its target genes in alveolar macrophages, nasal, and bronchial epithelium and peripheral blood mononuclear cells (PBMCs) in current and former smokers with COPD. We compared cell-type specific of Nrf2 and its target genes as well as markers of oxidative and inflammatory stress. RESULTS: We enrolled 89 patients; expression all Nrf2 target gene measured were significantly higher in the bronchial epithelium from smokers compared to non-smokers. None were elevated in alveolar macrophages and only one was elevated in each of the other compartments. CONCLUSION: Bronchial epithelium is the most responsive tissue for transcriptional activation of Nrf2 target genes in active smokers compared to former-smokers with COPD that correlated with oxidative stress and inflammatory markers. There were no consistent trends in gene expression in other cell types tested. TRIAL REGISTRATION: Clinicaltrials.gov : NCT01335971.


Assuntos
Antioxidantes/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/genética , Fumar/metabolismo , Idoso , Brônquios/metabolismo , Método Duplo-Cego , Epitélio/metabolismo , Feminino , Humanos , Isotiocianatos/uso terapêutico , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Abandono do Hábito de Fumar , Sulfóxidos , Ativação Transcricional
9.
FASEB J ; : fj201800204, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906244

RESUMO

Oncogenic Kras mutations are one of the most common alterations in non-small cell lung cancer and are associated with poor response to treatment and reduced survival. Driver oncogenes, such as Kras are now appreciated for their ability to promote tumor growth via up-regulation of anabolic pathways. Therefore, we wanted to identify metabolic vulnerabilities in Kras-mutant lung cancer. Using the Kras LSL-G12D lung cancer model, we show that mutant Kras drives a lipogenic gene-expression program. Stable-isotope analysis reveals that mutant Kras promotes de novo fatty acid synthesis in vitro and in vivo. The importance of fatty acid synthesis in Kras-induced tumorigenesis was evident by decreased tumor formation in Kras LSL-G12D mice after treatment with a fatty acid synthesis inhibitor. Importantly, with gain and loss of function models of mutant Kras, we demonstrate that mutant Kras potentiates the growth inhibitory effects of several fatty acid synthesis inhibitors. These studies highlight the potential to target mutant Kras tumors by taking advantage of the lipogenic phenotype induced by mutant Kras.-Singh, A., Ruiz, C., Bhalla, K., Haley, J. A., Li, Q. K., Acquaah-Mensah, G., Montal, E., Sudini, K. R., Skoulidis, F., Wistuba, I. I., Papadimitrakopoulou, V., Heymach, J. V., Boros, L. G., Gabrielson, E., Carretero, J., Wong, K.-k., Haley, J. D., Biswal, S., Girnun, G. D. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer.

10.
J Immunol ; 198(10): 3815-3822, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381639

RESUMO

Embryonic development is highly sensitive to xenobiotic toxicity and in utero exposure to environmental toxins affects physiological responses of the progeny. In the United States, the prevalence of allergic asthma (AA) is inexplicably rising and in utero exposure to cigarette smoke increases the risk of AA and bronchopulmonary dysplasia (BPD) in children and animal models. We reported that gestational exposure to sidestream cigarette smoke (SS), or secondhand smoke, promoted nicotinic acetylcholine receptor-dependent exacerbation of AA and BPD in mice. Recently, perinatal nicotine injections in rats were reported to induce peroxisome proliferator-activated receptor γ-dependent transgenerational transmission of asthma. Herein, we show that first generation and second generation progeny from gestationally SS-exposed mice exhibit exacerbated AA and BPD that is not dependent on the decrease in peroxisome proliferator-activated receptor γ levels. Lungs from these mice show strong eosinophilic infiltration, excessive Th2 polarization, marked airway hyperresponsiveness, alveolar simplification, decreased lung compliance, and decreased lung angiogenesis. At the molecular level, these changes are associated with increased RUNX3 expression, alveolar cell apoptosis, and the antiangiogenic factor GAX, and decreased expression of HIF-1α and proangiogenic factors NF-κB and VEGFR2 in the 7-d first generation and second generation lungs. Moreover, the lungs from these mice exhibit lower levels of microRNA (miR)-130a and increased levels of miR-16 and miR-221. These miRs regulate HIF-1α-regulated apoptotic, angiogenic, and immune pathways. Thus the intergenerational effects of gestational SS involve epigenetic regulation of HIF-1α through specific miRs contributing to increased incidence of AA and BPD in the progenies.


Assuntos
Asma/etiologia , Asma/genética , Displasia Broncopulmonar/etiologia , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Fumaça/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos , Células Epiteliais Alveolares/patologia , Animais , Apoptose , Asma/imunologia , Asma/fisiopatologia , Displasia Broncopulmonar/imunologia , Displasia Broncopulmonar/fisiopatologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Proteínas de Homeodomínio/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Pulmão/patologia , Camundongos , MicroRNAs/genética , Subunidade p50 de NF-kappa B/genética , Fatores de Crescimento Neural , Neuropeptídeos/genética , Nicotina/efeitos adversos , PPAR gama/genética , PPAR gama/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fumar/efeitos adversos , Células Th2/imunologia
11.
BMC Public Health ; 18(1): 175, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29368600

RESUMO

After publication of the article [1], it has been brought to our attention that there is a funding acknowledgement missing. The authors would also like to include "Dr. Michael Joseph Blaha is funded by the American Heart Association Tobacco Regulatory Center, funding number: 1P50HL120163".

12.
Proc Natl Acad Sci U S A ; 112(50): E6927-36, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621751

RESUMO

Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell-cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.


Assuntos
Isquemia/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Neurônios/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Semaforinas/metabolismo , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Isquemia/patologia , Camundongos , Neovascularização Patológica , Receptores Notch/metabolismo , Regeneração , Vasos Retinianos/patologia , Transdução de Sinais
13.
Am J Respir Cell Mol Biol ; 57(1): 59-65, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28245149

RESUMO

Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 µm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 µm/m3, a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.


Assuntos
Eosinófilos/patologia , Hipersensibilidade/patologia , Inflamação/patologia , Nariz/patologia , Seios Paranasais/patologia , Material Particulado/efeitos adversos , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imunofluorescência , Interleucina-13/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Tamanho da Partícula
14.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L138-L153, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408365

RESUMO

Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia.


Assuntos
Resistência à Doença , Fatores Imunológicos/farmacologia , Influenza Humana/complicações , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/imunologia , Receptores Imunológicos/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Líquido da Lavagem Broncoalveolar , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon gama/farmacologia , Isotiocianatos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infecções por Orthomyxoviridae/complicações , Fagocitose/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Análise de Sequência de RNA , Transdução de Sinais , Staphylococcus aureus/efeitos dos fármacos , Sulfóxidos , Regulação para Cima/genética
15.
Muscle Nerve ; 56(2): 282-291, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27862020

RESUMO

INTRODUCTION: Respiratory and locomotor skeletal muscle dysfunction are common findings in chronic obstructive pulmonary disease (COPD); however, the mechanisms that cause muscle impairment in COPD are unclear. Because Ca2+ signaling in excitation-contraction (E-C) coupling is important for muscle activity, we hypothesized that Ca2+ dysregulation could contribute to muscle dysfunction in COPD. METHODS: Intercostal and flexor digitorum brevis muscles from control and cigarette smoke-exposed mice were investigated. We used single cell Ca2+ imaging and Western blot assays to assess Ca2+ signals and E-C coupling proteins. RESULTS: We found impaired Ca2+ signals in muscle fibers from both muscle types, without significant changes in releasable Ca2+ or in the expression levels of E-C coupling proteins. CONCLUSIONS: Ca2+ dysregulation may contribute or accompany respiratory and locomotor muscle dysfunction in COPD. These findings are of significance to the understanding of the pathophysiological course of COPD in respiratory and locomotor muscles. Muscle Nerve 56: 282-291, 2017.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Pé/inervação , Fibras Musculares Esqueléticas/fisiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Potenciais de Ação/fisiologia , Poluentes Atmosféricos/toxicidade , Animais , Calmodulina/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo
17.
BMC Public Health ; 17(1): 686, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28882123

RESUMO

BACKGROUND: The use of electronic cigarettes (EC) has risen exponentially over the past decade, including among never smokers, and ECs are now the most popular tobacco product among teenagers in the US. While, EC manufacturers utilize numerous marketing strategies to target both smokers and non-smokers, it is unclear how perceptions and behaviors differ between these two groups. METHODS: We conducted a survey of 320 adults either via online surveys or in Baltimore vape shops to determine demographics, behaviors, perceptions, and motivations underlying use of ECs. RESULTS: Our survey respondents were predominantly young, Caucasian males, 74% of whom identified themselves as former smokers, while 20% identified as current smokers and 6% were never smokers. Former smokers reported a longer history of EC use and higher nicotine concentrations than current smokers. For former and current smokers, the primary motivation for EC use was assistance to quit smoking, and nearly half indicated that they plan to reduce their nicotine concentration and eventually quit using ECs. Among former smokers, self-reports on use and measures of dependence were consistent with nicotine replacement as their primary motivation. The majority of former and current smokers also reported that their respiratory health had improved as a result of EC use, although this effect was stronger for former smokers. Never smokers reported less frequent EC use and dependence compared to former and current smokers. Their motivations for use were more commonly for enjoyment and popularity, and they displayed a reduced desire to eventually quit using ECs. CONCLUSIONS: These responses provide insight into the underlying thoughts and behaviors of smoking and non-smoking EC users and also suggest that never smoking EC users are an emerging demographic with different motivations and perceptions than those of current and former smokers.


Assuntos
Motivação , Fumantes/psicologia , Fumar/epidemiologia , Fumar/psicologia , Vaping/psicologia , Adolescente , Adulto , Baltimore/epidemiologia , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Fumantes/estatística & dados numéricos , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 110(41): E3910-8, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062466

RESUMO

Angiogenesis, in which new blood vessels form via endothelial cell (EC) sprouting from existing vessels, is a critical event in embryonic development and multiple disease processes. Many insights have been made into key EC receptors and ligands/growth factors that govern sprouting angiogenesis, but intracellular molecular mechanisms of this process are not well understood. NF-E2-related factor 2 (Nrf2) is a transcription factor well-known for regulating the stress response in multiple pathologic settings, but its role in development is less appreciated. Here, we show that Nrf2 is increased and activated during vascular development. Global deletion of Nrf2 resulted in reduction of vascular density as well as EC sprouting. This was also observed with specific deletion of Nrf2 in ECs, but not with deletion of Nrf2 in the surrounding nonvascular tissue. Nrf2 deletion resulted in increased delta-like ligand 4 (Dll4) expression and Notch activity in ECs. Blockade of Dll4 or Notch signaling restored the vascular phenotype in Nrf2 KOs. Constitutive activation of endothelial Nrf2 enhanced EC sprouting and vascularization by suppression of Dll4/Notch signaling in vivo and in vitro. Nrf2 activation in ECs suppressed Dll4 expression under normoxia and hypoxia and inhibited Dll4-induced Notch signaling. Activation of Nrf2 blocked VEGF induction of VEGFR2-PI3K/Akt and downregulated HIF-2α in ECs, which may serve as important mechanisms for Nrf2 inhibition of Dll4 and Notch signaling. Our data reveal a function for Nrf2 in promoting the angiogenic sprouting phenotype in vascular ECs.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/fisiologia , Vasos Retinianos/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Bromodesoxiuridina , Proteínas de Ligação ao Cálcio , Crioultramicrotomia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdissecção e Captura a Laser , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Notch/metabolismo , Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 309(1): L27-36, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25957295

RESUMO

Asthma development and pathogenesis are influenced by the interactions of airway epithelial cells and innate and adaptive immune cells in response to allergens. Oxidative stress is an important mediator of asthmatic phenotypes in these cell types. Nuclear erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that is the key regulator of the response to oxidative and environmental stress. We previously demonstrated that Nrf2-deficient mice have heightened susceptibility to asthma, including elevated oxidative stress, inflammation, mucus, and airway hyperresponsiveness (AHR) (Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, Biswal S. J Exp Med 202: 47-59, 2005). Here we dissected the role of Nrf2 in lung epithelial cells and tested whether genetic or pharmacological activation of Nrf2 reduces allergic asthma in mice. Cell-specific activation of Nrf2 in club cells of the airway epithelium significantly reduced allergen-induced AHR, inflammation, mucus, Th2 cytokine secretion, oxidative stress, and airway leakiness and increased airway levels of tight junction proteins zonula occludens-1 and E-cadherin. In isolated airway epithelial cells, Nrf2 enhanced epithelial barrier function and increased localization of zonula occludens-1 to the cell surface. Pharmacological activation of Nrf2 by 2-trifluoromethyl-2'-methoxychalone during the allergen challenge was sufficient to reduce allergic inflammation and AHR. New therapeutic options are needed for asthma, and this study demonstrates that activation of Nrf2 in lung epithelial cells is a novel potential therapeutic target to reduce asthma susceptibility.


Assuntos
Asma/patologia , Hiper-Reatividade Brônquica/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Junções Íntimas/imunologia , Proteína da Zônula de Oclusão-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Asma/induzido quimicamente , Asma/imunologia , Caderinas/metabolismo , Chalconas/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , Citoproteção , Proteínas do Citoesqueleto/genética , Células Epiteliais/metabolismo , Inflamação/imunologia , Proteína 1 Associada a ECH Semelhante a Kelch , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Ovalbumina , Estresse Oxidativo/imunologia , Mucosa Respiratória/citologia , Células Th2/imunologia
20.
J Neurochem ; 133(2): 233-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683606

RESUMO

Retinal ischemia plays a critical role in multiple vision-threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF-E2-related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated. We investigated the potential retinal neuroprotective function of Nrf2 after ischemia-reperfusion (I/R) injury. In an experimental model of retinal I/R, Nrf2 knockout mice exhibited much greater loss of neuronal cells in the ganglion cell layer than wild-type mice. Primary retinal ganglion cells isolated from Nrf2 knockout mice exhibited decreased cell viability compared to wild-type retinal ganglion cells, demonstrating the cell-intrinsic protective role of Nrf2. The retinal neuronal cell line 661W exhibited reduced cell viability following siRNA-mediated knockdown of Nrf2 under conditions of oxidative stress, and this was associated with exacerbation of increase in reactive oxygen species. The synthetic triterpenoid CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), a potent Nrf2 activator, inhibited reactive oxygen species increase in cultured 661W under oxidative stress conditions and increased neuronal cell survival after I/R injury in wild-type, but not Nrf2 knockout mice. Our findings indicate that Nrf2 exhibits a retinal neuroprotective function in I/R and suggest that pharmacologic activation of Nrf2 could be a therapeutic strategy. Oxidative stress is thought to be an important mediator of retinal ganglion cell death in ischemia-reperfusion injury. We found that the transcription factor NF-E2-related factor 2 (Nrf2), a major regulator of oxidative stress, is an important endogenous neuroprotective molecule in retinal ganglion cells in ischemia-reperfusion, exerting a cell-autonomous protective effect.  The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) reduces neurodegeneration following ischemia-reperfusion in an Nrf2-dependent fashion. This suggests that Nrf2-activating drugs including triterpenoids could be a therapeutic strategy for retinal neuroprotection.


Assuntos
Isquemia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Imidazóis/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , RNA Interferente Pequeno/farmacologia , Retina/citologia , Células Ganglionares da Retina/metabolismo , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA