Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782470

RESUMO

Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation.


Assuntos
Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Vibrissas/fisiologia , Animais , Astrócitos/metabolismo , Aprendizagem , Espectroscopia de Ressonância Magnética , Masculino , Memória , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neurônios/metabolismo , Saturação de Oxigênio , Ratos , Ratos Wistar
2.
J Cereb Blood Flow Metab ; 41(2): 342-358, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32208801

RESUMO

Hypoxic-ischemic (HI) encephalopathy remains a major cause of perinatal mortality and chronic disability in newborns worldwide (1-6 for 1000 births). The only current clinical treatment is hypothermia, which is efficient for less than 60% of babies. Mainly considered as a waste product in the past, lactate, in addition to glucose, is increasingly admitted as a supplementary fuel for neurons and, more recently, as a signaling molecule in the brain. Our aim was to investigate the neuroprotective effect of lactate in a neonatal (seven day old) rat model of hypoxia-ischemia. Pups received intra-peritoneal injection(s) of lactate (40 µmol). Size and apparent diffusion coefficients of brain lesions were assessed by magnetic resonance diffusion-weighted imaging. Oxiblot analyses and long-term behavioral studies were also conducted. A single lactate injection induced a 30% reduction in brain lesion volume, indicating a rapid and efficient neuroprotective effect. When oxamate, a lactate dehydrogenase inhibitor, was co-injected with lactate, the neuroprotection was completely abolished, highlighting the role of lactate metabolism in this protection. After three lactate injections (one per day), pups presented the smallest brain lesion volume and a complete recovery of neurological reflexes, sensorimotor capacities and long-term memory, demonstrating that lactate administration is a promising therapy for neonatal HI insult.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Ácido Láctico/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Ratos , Ratos Wistar
3.
J Vis Exp ; (144)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30799865

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy offers the opportunity to measure cerebral metabolite contents in vivo and noninvasively. Thanks to technological developments over the last decade and the increase in magnetic field strength, it is now possible to obtain good resolution spectra in vivo in the rat brain. Neuroenergetics (i.e., the study of brain metabolism) and, especially, metabolic interactions between the different cell types have attracted more and more interest in recent years. Among these metabolic interactions, the existence of a lactate shuttle between neurons and astrocytes is still debated. It is, thus, of great interest to perform functional proton magnetic resonance spectroscopy (1H-MRS) in a rat model of brain activation and monitor lactate. However, the methyl lactate peak overlaps lipid resonance peaks and is difficult to quantify. The protocol described below allows metabolic and lactate fluctuations to be monitored in an activated brain area. Cerebral activation is obtained by whisker stimulation and 1H-MRS is performed in the corresponding activated barrel cortex, whose area is detected using blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). All steps are fully described: the choice of anesthetics, coils, and sequences, achieving efficient whisker stimulation directly in the magnet, and data processing.


Assuntos
Encéfalo/fisiologia , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
4.
Front Cell Neurosci ; 13: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941014

RESUMO

The dynamic in vivo profiling of lactate is of uppermost importance in both neuroenergetics and neuroprotection fields, considering its central suspected role as a metabolic and signaling molecule. For this purpose, we implemented proton magnetic resonance spectroscopy (1H-MRS) directly on brain microdialysate to monitor online the fluctuation of lactate contents during neuronal stimulation. Brain activation was obtained by right whisker stimulation of rats, which leads to the activation of the left barrel cortex area in which the microdialysis probe was implanted. The experimental protocol relies on the use of dedicated and sensitive home-made NMR microcoil able to perform lactate NMR profiling at submillimolar concentration. The MRS measurements of extracellular lactate concentration were performed inside a pre-clinical MRI scanner allowing simultaneous visualization of the correct location of the microprobe by MRI and detection of metabolites contained in the microdialysis by MRS. A 40% increase in lactate concentration was measured during whisker stimulation in the corresponding barrel cortex. This combination of microdialysis with online MRS/MRI provides a new approach to follow in vivo lactate fluctuations, and can be further implemented in physio-pathological conditions to get new insights on the role of lactate in brain metabolism and signaling.

5.
PLoS One ; 12(4): e0174990, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388627

RESUMO

Although several in vitro and ex vivo evidence support the existence of lactate exchange between astrocytes and neurons, a direct demonstration in vivo is still lacking. In the present study, a lentiviral vector carrying a short hairpin RNA (shRNA) was used to downregulate the expression of the monocarboxylate transporter type 2 (MCT2) in neurons of the rat somatosensory cortex (called S1BF) by ~ 25%. After one hour of whisker stimulation, HRMAS 1H-NMR spectroscopy analysis of S1BF perchloric acid extracts showed that while an increase in lactate content is observed in both uninjected and shRNA-control injected extracts, such an effect was abrogated in shMCT2 injected rats. A 13C-incorporation analysis following [1-13C]glucose infusion during the stimulation confirmed that the elevated lactate observed during activation originates from newly synthesized [3-13C]lactate, with blood-derived [1-13C]glucose being the precursor. Moreover, the analysis of the 13C-labeling of glutamate in position C3 and C4 indicates that upon activation, there is an increase in TCA cycle velocity for control rats while a decrease is observed for MCT2 knockdown animals. Using in vivo localized 1H-NMR spectroscopy, an increase in lactate levels is observed in the S1BF area upon whisker stimulation for shRNA-control injected rats but not for MCT2 knockdown animals. Finally, while a robust BOLD fMRI response was evidenced in control rats, it was absent in MCT2 knockdown rats. These data not only demonstrate that glucose-derived lactate is locally produced following neuronal activation but also suggest that its use by neurons via MCT2 is probably essential to maintain synaptic activity within the barrel cortex.


Assuntos
Técnicas de Silenciamento de Genes , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiologia , Neurônios/metabolismo , Córtex Somatossensorial/fisiologia , Vibrissas , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Feminino , Vetores Genéticos , Lentivirus/genética , Imageamento por Ressonância Magnética , Transportadores de Ácidos Monocarboxílicos/genética , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Wistar , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA