Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
PLoS Genet ; 17(3): e1009429, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764968

RESUMO

Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d'Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.


Assuntos
Marcha/genética , Locomoção/genética , Mutação com Perda de Função , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Estudos de Associação Genética , Genoma , Genômica/métodos , Interneurônios/metabolismo , Fenótipo , Sítios de Splice de RNA , Coelhos , Medula Espinal/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(28): 7380-7385, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941556

RESUMO

The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.


Assuntos
Comportamento Animal/fisiologia , Domesticação , Medo/fisiologia , Substância Cinzenta , Córtex Pré-Frontal , Substância Branca , Animais , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Coelhos , Substância Branca/anatomia & histologia , Substância Branca/fisiologia
3.
Mol Ecol ; 27(6): 1457-1478, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359877

RESUMO

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.


Assuntos
Aberrações Cromossômicas , Regulação da Expressão Gênica/genética , Especiação Genética , Isolamento Reprodutivo , Animais , Frequência do Gene , Masculino , Modelos Genéticos , Locos de Características Quantitativas/genética , Coelhos , Testículo/metabolismo , Sequenciamento Completo do Genoma
4.
Virus Genes ; 54(1): 1-4, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151222

RESUMO

A recent publication by Carvalho et al. in "Virus Genes" (June 2017) reported the presence of the new variant of rabbit hemorrhagic disease virus (RHDV2) in the two larger islands of the archipelago of Madeira. Based on the capsid protein sequence, the authors suggested that the high sequence identity, along with the short time spanning between outbreaks, points to dissemination from Porto Santo to Madeira. By including information of the full RHDV2 genome of strains from Azores, Madeira, and the Canary Islands, we confirm the results obtained by Carvalho et al., but further show that several subtypes of RHDV2 circulate in these islands: non-recombinant RHDV2 in the Canary Islands, G1/RHDV2 in Azores, Porto Santo and Madeira, and NP/RHDV2 also in Madeira. Here we conclude that RHDV2 has been independently introduced in these archipelagos, and that in Madeira at least two independent introductions must have occurred. We provide additional information on the dynamics of RHDV2 in the Macaronesian archipelagos of Azores, Madeira, and the Canary Islands and highlight the importance of analyzing RHDV2 complete genome.


Assuntos
Variação Genética , Genótipo , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Sequenciamento Completo do Genoma , Açores , Análise por Conglomerados , Vírus da Doença Hemorrágica de Coelhos/genética , Filogenia , Portugal , Homologia de Sequência , Espanha
5.
PLoS Genet ; 10(8): e1003519, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166595

RESUMO

The analysis of introgression of genomic regions between divergent populations provides an excellent opportunity to determine the genetic basis of reproductive isolation during the early stages of speciation. However, hybridization and subsequent gene flow must be relatively common in order to localize individual loci that resist introgression. In this study, we used next-generation sequencing to study genome-wide patterns of genetic differentiation between two hybridizing subspecies of rabbits (Oryctolagus cuniculus algirus and O. c. cuniculus) that are known to undergo high rates of gene exchange. Our primary objective was to identify specific genes or genomic regions that have resisted introgression and are likely to confer reproductive barriers in natural conditions. On the basis of 326,000 polymorphisms, we found low to moderate overall levels of differentiation between subspecies, and fewer than 200 genomic regions dispersed throughout the genome showing high differentiation consistent with a signature of reduced gene flow. Most differentiated regions were smaller than 200 Kb and contained very few genes. Remarkably, 30 regions were each found to contain a single gene, facilitating the identification of candidate genes underlying reproductive isolation. This gene-level resolution yielded several insights into the genetic basis and architecture of reproductive isolation in rabbits. Regions of high differentiation were enriched on the X-chromosome and near centromeres. Genes lying within differentiated regions were often associated with transcription and epigenetic activities, including chromatin organization, regulation of transcription, and DNA binding. Overall, our results from a naturally hybridizing system share important commonalities with hybrid incompatibility genes identified using laboratory crosses in mice and flies, highlighting general mechanisms underlying the maintenance of reproductive barriers.


Assuntos
Especiação Genética , Genética Populacional , Hibridização Genética , Isolamento Reprodutivo , Animais , Centrômero , Europa (Continente) , Fluxo Gênico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Coelhos , Cromossomo X
6.
PLoS Genet ; 8(9): e1002962, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028369

RESUMO

Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.


Assuntos
Animais Domésticos , Animais Selvagens , Encéfalo/metabolismo , Expressão Gênica , Antígeno AC133 , Animais , Animais Domésticos/genética , Animais Domésticos/metabolismo , Animais Selvagens/genética , Animais Selvagens/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Comportamento Animal , Cães , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cobaias , Peptídeos/genética , Peptídeos/metabolismo , Coelhos , Ratos , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Sus scrofa , Lobos
7.
Mol Biol Evol ; 29(7): 1837-49, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22319161

RESUMO

The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a gene's expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.


Assuntos
Genoma , Coelhos/genética , Seleção Genética , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Cromossomos de Mamíferos , Feminino , Aptidão Genética , Humanos , Masculino , Camundongos , Polimorfismo Genético , Transcriptoma , Cromossomo X
8.
Mol Ecol ; 20(12): 2628-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21535277

RESUMO

The Pleistocene climatic oscillations promoted the diversification in avian species during the last glacial period. The red-legged partridge (Alectoris rufa, Family Phasianidae) has a large natural distribution extending from the Mediterranean to humid temperate zones. However, the genetic structure for this species is unknown. The present study investigates the phylogeography, genetic structure and demographic history of A. rufa across its distribution, employing both mitochondrial DNA control region sequences and nuclear microsatellite loci. Our results propose that this species was greatly affected by Pleistocene glaciations. The mismatch analyses suggest that the current populations resulted from post-glacial expansion and subsequent differentiation resulting in five diagnosable genetic clusters: Southwestern, Central-eastern, Northwestern, Balearic and French and Italian. Further, we found evidence of three glacial refugia within the currently recognized Iberian glacial refugium. The intraspecific structure revealed by both maternal and biparental phylogeographic analyses was not resolved in the phylogenetic analyses. Based on all considerations, we recommended that five management units be recognized.


Assuntos
Galliformes/genética , Animais , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/genética , Demografia , Evolução Molecular , França , Galliformes/classificação , Estruturas Genéticas , Variação Genética , Haplótipos , Camada de Gelo , Itália , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Filogeografia , Dinâmica Populacional , Portugal , Análise de Sequência de DNA , Espanha
9.
Genome Biol Evol ; 12(10): 1918-1928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835359

RESUMO

Domestication has resulted in immense phenotypic changes in animals despite their relatively short evolutionary history. The European rabbit is one of the most recently domesticated animals, but exhibits distinct morphological, physiological, and behavioral differences from their wild conspecifics. A previous study revealed that sequence variants with striking allele frequency differences between wild and domestic rabbits were enriched in conserved noncoding regions, in the vicinity of genes involved in nervous system development. This suggests that a large proportion of the genetic changes targeted by selection during domestication might affect gene regulation. Here, we generated RNA-sequencing data for four brain regions (amygdala, hypothalamus, hippocampus, and parietal/temporal cortex) sampled at birth and revealed hundreds of differentially expressed genes (DEGs) between wild and domestic rabbits. DEGs in amygdala were significantly enriched for genes associated with dopaminergic function and all 12 DEGs in this category showed higher expression in domestic rabbits. DEGs in hippocampus were enriched for genes associated with ciliary function, all 21 genes in this category showed lower expression in domestic rabbits. These results indicate an important role of dopamine signaling and ciliary function in the evolution of tameness during rabbit domestication. Our study shows that gene expression in specific pathways has been profoundly altered during domestication, but that the majority of genes showing differential expression in this study have not been the direct targets of selection.


Assuntos
Evolução Biológica , Encéfalo/metabolismo , Domesticação , Dopamina/metabolismo , Coelhos/genética , Animais , Animais Recém-Nascidos , Cílios/genética , Mapas de Interação de Proteínas , Coelhos/metabolismo , Seleção Genética , Transcriptoma
10.
Genetics ; 205(2): 955-965, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986804

RESUMO

The dwarf phenotype characterizes the smallest of rabbit breeds and is governed largely by the effects of a single dwarfing allele with an incompletely dominant effect on growth. Dwarf rabbits typically weigh under 1 kg and have altered craniofacial morphology. The dwarf allele is recessive lethal and dwarf homozygotes die within a few days of birth. The dwarf phenotype is expressed in heterozygous individuals and rabbits from dwarf breeds homozygous for the wild-type allele are normal, although smaller when compared to other breeds. Here, we show that the dwarf allele constitutes a ∼12.1 kb deletion overlapping the promoter region and first three exons of the HMGA2 gene leading to inactivation of this gene. HMGA2 has been frequently associated with variation in body size across species. Homozygotes for null alleles are viable in mice but not in rabbits and probably not in humans. RNA-sequencing analysis of rabbit embryos showed that very few genes (4-29 genes) were differentially expressed among the three HMGA2/dwarf genotypes, suggesting that dwarfism and inviability in rabbits are caused by modest changes in gene expression. Our results show that HMGA2 is critical for normal expression of IGF2BP2, which encodes an RNA-binding protein. Finally, we report a catalog of regions of elevated genetic differentiation between dwarf and normal-size rabbits, including LCORL-NCAPG, STC2, HOXD cluster, and IGF2BP2 Levels and patterns of genetic diversity at the LCORL-NCAPG locus further suggest that small size in dwarf breeds was enhanced by crosses with wild rabbits. Overall, our results imply that small size in dwarf rabbits results from a large effect, loss-of-function (LOF) mutation in HMGA2 combined with polygenic selection.


Assuntos
Nanismo/genética , Deleção de Genes , Proteína HMGA2/genética , Coelhos/genética , Animais , Éxons , Proteína HMGA2/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Coelhos/crescimento & desenvolvimento
12.
Evolution ; 64(12): 3443-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20666840

RESUMO

Studies of gene flow between closely related taxa can provide insight into the genetic basis of speciation. To evaluate the importance of the X chromosome in reproductive isolation between subspecies of the European rabbit and to study the genomic scale over which islands of differentiation extend, we resequenced a total of 34 loci distributed along the X chromosome and chromosome 14. Previous studies based on few markers suggested that loci in centromeric regions were highly differentiated between rabbit subspecies, whereas loci in telomeric regions were less differentiated. Here, we confirmed this finding but also discovered remarkable variation in levels of differentiation among loci, with F(ST) values from nearly 0 to 1. Analyses using isolation-with-migration models suggest that this range appears to be largely explained by differential levels of gene flow among loci. The X chromosome was significantly more differentiated than the autosomes. On chromosome 14, differentiation decayed very rapidly at increasing distances from the centromere, but on the X chromosome distinct islands of differentiation encompassing several megabases were observed both at the centromeric region and along the chromosome arms. These findings support the idea that the X chromosome plays an important role in reproductive isolation between rabbit subspecies. These results also demonstrate the mosaic nature of the genome at species boundaries.


Assuntos
Animais Selvagens/genética , Cromossomos de Mamíferos , Especiação Genética , Coelhos/genética , Reprodução , Cromossomo X , Animais , Animais Selvagens/classificação , Animais Selvagens/fisiologia , Evolução Biológica , Centrômero/genética , Fluxo Gênico , Ligação Genética , Variação Genética , Masculino , Dados de Sequência Molecular , Portugal , Coelhos/classificação , Coelhos/fisiologia , Homologia de Sequência do Ácido Nucleico , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA