Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296687

RESUMO

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Assuntos
COVID-19/metabolismo , Células Eritroides/patologia , Megacariócitos/fisiologia , Plasmócitos/fisiologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Circulação Sanguínea , COVID-19/imunologia , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Análise de Sequência de RNA , Índice de Gravidade de Doença , Análise de Célula Única
2.
Int J Cancer ; 146(2): 461-474, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31603527

RESUMO

The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level. CPX efficiently blocks the proliferation of HPV-positive cancer cells by inducing cellular senescence. Although active mTOR signaling is considered to be critical for the cellular senescence response towards a variety of prosenescent agents, CPX-induced senescence occurs under conditions of severely impaired mTOR signaling. Prolonged CPX treatment leads to p53-independent Caspase-3/7 activation and induction of apoptosis. CPX also eliminates HPV-positive cancer cells under hypoxic conditions through induction of apoptosis. Taken together, these results show that iron deprivation exerts profound antiviral and antiproliferative effects in HPV-positive cancer cells and suggest that iron chelators, such as CPX, possess therapeutic potential as HPV-inhibitory, prosenescent and proapoptotic agents in both normoxic and hypoxic environments.


Assuntos
Ciclopirox/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Oncogênicas Virais/antagonistas & inibidores , Proteínas E7 de Papillomavirus/antagonistas & inibidores , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ciclopirox/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HCT116 , Células HeLa , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteínas Repressoras/metabolismo , Esferoides Celulares , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
3.
Genome Med ; 14(1): 110, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153599

RESUMO

BACKGROUND AND AIMS: Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF antagonist infliximab and analyzed the predictive potential regarding therapy outcome. METHODS: We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methylation data were analyzed and correlated with clinical remission at week 14 as a primary endpoint. RESULTS: We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated CD patients. CONCLUSIONS: Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predictors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD unlikely to benefit from TNF antagonists at an early time point.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores do Fator de Necrose Tumoral , Biomarcadores , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Infliximab/uso terapêutico , Interferons/uso terapêutico , Estudos Prospectivos , RNA , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA