Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Cell ; 175(6): 1546-1560.e17, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500537

RESUMO

Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.


Assuntos
Carbono/metabolismo , Citosol/metabolismo , Formiatos/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Tetra-Hidrofolatos/metabolismo , Citosol/patologia , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Metotrexato/farmacocinética , Metotrexato/farmacologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tetra-Hidrofolato Desidrogenase/metabolismo
2.
Cell ; 171(1): 10-13, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28888322

RESUMO

Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target.


Assuntos
Distinções e Prêmios , Células/metabolismo , Fisiologia/história , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/uso terapêutico , História do Século XX , Humanos , Neoplasias/tratamento farmacológico , Sirolimo/química , Sirolimo/isolamento & purificação , Sirolimo/uso terapêutico , Suíça
3.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153836

RESUMO

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Assuntos
Regulação da Expressão Gênica , Lipogênese , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Animais , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Feminino , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
6.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595559

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Assuntos
Arginina , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1 , Lipogênese/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fatores de Processamento de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Humanos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
7.
Cell ; 181(5): 961-963, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33074798
8.
Nature ; 629(8014): 1174-1181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720073

RESUMO

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Assuntos
Fosfotirosina , Proteínas Tirosina Quinases , Especificidade por Substrato , Tirosina , Animais , Humanos , Motivos de Aminoácidos , Evolução Molecular , Espectrometria de Massas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Transdução de Sinais , Domínios de Homologia de src , Tirosina/metabolismo , Tirosina/química
9.
Nature ; 613(7945): 759-766, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631611

RESUMO

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Assuntos
Fosfoproteínas , Proteínas Serina-Treonina Quinases , Proteoma , Serina , Treonina , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Proteoma/química , Proteoma/metabolismo , Conjuntos de Dados como Assunto , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Linhagem Celular , Fosfosserina/metabolismo , Fosfotreonina/metabolismo
10.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756105

RESUMO

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Assuntos
Adenosina/análogos & derivados , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estabilidade de RNA , Adenosina/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Biológicos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
11.
Cell ; 153(4): 840-54, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663782

RESUMO

Proliferating mammalian cells use glutamine as a source of nitrogen and as a key anaplerotic source to provide metabolites to the tricarboxylic acid cycle (TCA) for biosynthesis. Recently, mammalian target of rapamycin complex 1 (mTORC1) activation has been correlated with increased nutrient uptake and metabolism, but no molecular connection to glutaminolysis has been reported. Here, we show that mTORC1 promotes glutamine anaplerosis by activating glutamate dehydrogenase (GDH). This regulation requires transcriptional repression of SIRT4, the mitochondrial-localized sirtuin that inhibits GDH. Mechanistically, mTORC1 represses SIRT4 by promoting the proteasome-mediated destabilization of cAMP-responsive element binding 2 (CREB2). Thus, a relationship between mTORC1, SIRT4, and cancer is suggested by our findings. Indeed, SIRT4 expression is reduced in human cancer, and its overexpression reduces cell proliferation, transformation, and tumor development. Finally, our data indicate that targeting nutrient metabolism in energy-addicted cancers with high mTORC1 signaling may be an effective therapeutic approach.


Assuntos
Glutamina/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Sirtuínas/metabolismo , Fatores Ativadores da Transcrição/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/citologia , Metabolismo Energético , Glutamato Desidrogenase/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Transplante de Neoplasias , Neoplasias/patologia , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Transplante Heterólogo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
12.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743625

RESUMO

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
13.
Nature ; 585(7824): 283-287, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814897

RESUMO

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Assuntos
Envelhecimento/metabolismo , Progressão da Doença , Ácido Metilmalônico/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/patologia , Adulto , Idoso , Envelhecimento/sangue , Envelhecimento/genética , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Ácido Metilmalônico/sangue , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias/sangue , Neoplasias/genética , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais , Transcriptoma/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Mol Cell ; 70(5): 949-960.e4, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861159

RESUMO

The mammalian Target of Rapamycin Complex 1 (mTORC1)-signaling system plays a critical role in the maintenance of cellular homeostasis by sensing and integrating multiple extracellular and intracellular cues. Therefore, uncovering the effectors of mTORC1 signaling is pivotal to understanding its pathophysiological effects. Here we report that the transcription factor forkhead/winged helix family k1 (Foxk1) is a mediator of mTORC1-regulated gene expression. Surprisingly, Foxk1 phosphorylation is increased upon mTORC1 suppression, which elicits a 14-3-3 interaction, a reduction of DNA binding, and nuclear exclusion. Mechanistically, this occurs by mTORC1-dependent suppression of nuclear signaling by the Foxk1 kinase, Gsk3. This pathway then regulates the expression of multiple genes associated with glycolysis and downstream anabolic pathways directly modulated by Foxk1 and/or by Foxk1-regulated expression of Hif-1α. Thus, Foxk1 mediates mTORC1-driven metabolic rewiring, and it is likely to be critical for metabolic diseases where improper mTORC1 signaling plays an important role.


Assuntos
Reprogramação Celular , Metabolismo Energético , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Proliferação de Células , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação , Ligação Proteica , Transdução de Sinais
16.
Mol Cell ; 67(3): 512-527.e4, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757207

RESUMO

Aberrant signaling by the mammalian target of rapamycin (mTOR) contributes to the devastating features of cancer cells. Thus, mTOR is a critical therapeutic target and catalytic inhibitors are being investigated as anti-cancer drugs. Although mTOR inhibitors initially block cell proliferation, cell viability and migration in some cancer cells are quickly restored. Despite sustained inhibition of mTORC1/2 signaling, Akt, a kinase regulating cell survival and migration, regains phosphorylation at its regulatory sites. Mechanistically, mTORC1/2 inhibition promotes reorganization of integrin/focal adhesion kinase-mediated adhesomes, induction of IGFR/IR-dependent PI3K activation, and Akt phosphorylation via an integrin/FAK/IGFR-dependent process. This resistance mechanism contributes to xenograft tumor cell growth, which is prevented with mTOR plus IGFR inhibitors, supporting this combination as a therapeutic approach for cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Quinase 1 de Adesão Focal/metabolismo , Melanoma/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Somatomedina/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Integrina alfa2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma/enzimologia , Melanoma/patologia , Camundongos Nus , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Trends Biochem Sci ; 45(5): 367-369, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32311329

RESUMO

Using cryo-electron microscopy and molecular characterization, David Sabatini and colleagues provide crucial new insights that validate and expand their model of how amino acids are sensed and signal at the lysosome to activate mechanistic target of rapamycin complex 1 (mTORC1) and cell growth-regulating processes. This work also reveals new therapeutic opportunities for mTORC1-driven diseases.


Assuntos
Microscopia Crioeletrônica , Transdução de Sinais , Aminoácidos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649236

RESUMO

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.


Assuntos
Autofagia , Proteínas de Drosophila/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metiltransferases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metilação , Metiltransferases/genética , Receptores Nucleares Órfãos , Estabilidade de RNA , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética
20.
Genes Dev ; 30(22): 2551-2564, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913603

RESUMO

Noncanonical mechanistic target of rapamycin (mTOR) pathways remain poorly understood. Mutations in the tumor suppressor folliculin (FLCN) cause Birt-Hogg-Dubé syndrome, a hamartomatous disease marked by mitochondria-rich kidney tumors. FLCN functionally interacts with mTOR and is expressed in most tissues, but its role in fat has not been explored. We show here that FLCN regulates adipose tissue browning via mTOR and the transcription factor TFE3. Adipose-specific deletion of FLCN relieves mTOR-dependent cytoplasmic retention of TFE3, leading to direct induction of the PGC-1 transcriptional coactivators, drivers of mitochondrial biogenesis and the browning program. Cytoplasmic retention of TFE3 by mTOR is sensitive to ambient amino acids, is independent of growth factor and tuberous sclerosis complex (TSC) signaling, is driven by RagC/D, and is separable from canonical mTOR signaling to S6K. Codeletion of TFE3 in adipose-specific FLCN knockout animals rescues adipose tissue browning, as does codeletion of PGC-1ß. Conversely, inducible expression of PGC-1ß in white adipose tissue is sufficient to induce beige fat gene expression in vivo. These data thus unveil a novel FLCN-mTOR-TFE3-PGC-1ß pathway-separate from the canonical TSC-mTOR-S6K pathway-that regulates browning of adipose tissue.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Respiração Celular/genética , Citoplasma/metabolismo , Deleção de Genes , Masculino , Camundongos , Mitocôndrias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA