Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Indoor Air ; 32(11): e13151, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437658

RESUMO

Airplane cabin ventilation is essential to ensure passengers' well-being. The conventional ventilation method is mixing ventilation with a statistically steady supply, which, according to former studies, has reached its limits regarding, for example, the ventilation efficiency. However, the effect of a statistically unsteady (time-periodic) supply on the mixing ventilation efficiency has remained largely unexplored. This research uses computational fluid dynamics (CFD) with the large eddy simulation (LES) approach to study isothermal time-periodic mixing ventilation in a section of a single-aisle airplane cabin model, in which the air exhaled by the passengers functions as (passive) contaminants. Two time-periodic supply strategies are evaluated. The induced time-periodic airflow patterns promote an efficient delivery of fresh air to the passenger zone and affect the passengers' expiratory plumes. This results in increased mean contaminant mass fluxes, causing a strong reduction of the mean contaminant concentrations in the passenger zone (up to 23%) and an increased contaminant extraction from the cabin. Mean velocities increase with up to 55% but remain within the comfortable range. It is shown that the ventilation efficiency improves; that is, the contaminant removal effectiveness and air change efficiency (in the full cabin volume) increase with up to 20% and 7%, respectively.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação/métodos , Aeronaves , Respiração , Hidrodinâmica
2.
J Biomech Eng ; 136(1): 011005, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24149940

RESUMO

In team pursuit, the drag of a group of cyclists riding in a pace line is dependent on several factors, such as anthropometric characteristics (stature) and position of each cyclist as well as the sequence in which they ride. To increase insight in drag reduction mechanisms, the aerodynamic drag of four cyclists riding in a pace line was investigated, using four different cyclists, and for four different sequences. In addition, each sequence was evaluated for two arm spacings. Instead of conventional field or wind tunnel experiments, a validated numerical approach (computational fluid dynamics) was used to evaluate cyclist drag, where the bicycles were not included in the model. The cyclist drag was clearly dependent on his position in the pace line, where second and subsequent positions experienced a drag reduction up to 40%, compared to an individual cyclist. Individual differences in stature and position on the bicycle led to an intercyclist variation of this drag reduction at a specific position in the sequence, but also to a variation of the total drag of the group for different sequences. A larger drag area for the group was found when riding with wider arm spacing. Such numerical studies on cyclists in a pace line are useful for determining the optimal cyclist sequence for team pursuit.


Assuntos
Ciclismo/fisiologia , Modelos Teóricos , Postura/fisiologia , Antropometria , Braço/fisiologia , Humanos , Hidrodinâmica , Masculino , Valores de Referência , Treinamento Resistido , Vento
3.
Sci Total Environ ; 807(Pt 2): 150490, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34666221

RESUMO

Air pollution and heat stress are major concerns associated with the liveability, resilience and sustainability of cities. They directly affect health and comfort and are associated with augmented morbidity and mortality and an increase in the energy demand for building ventilation, air cleaning and cooling. Nevertheless, the detrimental effects of poor air quality may partly be mitigated by increased urban ventilation. This strategy is closely related to the level of urbanization and the urban morphology. Therefore, detailed investigations on the impact of different morphologies on urban ventilation are of paramount importance. Computational Fluid Dynamics simulations have been widely used during the last decades to investigate the effects of the urban morphology on the urban ventilation. However, most of these studies focused on idealized building arrangements, while detailed investigations about the role of real urban morphologies are scarce. This study investigates the ventilation in a compact area in the city of Rome, Italy. 3D steady-state Reynolds-averaged Navier-Stokes simulations are performed to analyze the impact of Morphological Parameters (MP) on the urban ventilation. The results show a considerable worsening of urban ventilation with increasing building density with a reduction in the mean wind velocity up to 62% experienced at the pedestrian level (zp). Correlations between five MPs, e.g., plan area density, area-weighted mean building height, volume density, façade area density, and non-dimensional mean velocity at pedestrian level and at 10 m height are evaluated, and simple models are obtained using linear regression analysis. Among the selected MPs, the building façade area density shows a remarkable correlation with the non-dimensional mean velocity at zp (R2 = 0.82). Such correlations can be valuable tools for practitioners and urban designers, particularly during the first stage of planning, for highlighting areas potentially vulnerable to poor air conditions without running computationally expensive simulations.


Assuntos
Poluição do Ar , Respiração , Cidades , Cidade de Roma , Ventilação
4.
Sci Total Environ ; 695: 133743, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31756852

RESUMO

Heat stress in urban areas can have detrimental effects on human health, comfort and productivity. In order to mitigate heat stress, Computational Fluid Dynamics (CFD) simulations of urban microclimate are increasingly used. The validation of these simulations however requires high-quality experimental data to be compared with the simulation results. Due to lack of available high-resolution high-quality experimental data, CFD validation of urban microclimate for real urban areas is normally performed based on either a limited number of parameters measured at a limited number of points in space, or on experiments for idealized generic configurations. In this study, CFD simulations of urban microclimate are performed for a dense highly heterogeneous district in Nicosia, Cyprus and validated using a high-resolution dataset of on-site measurements of air temperature, wind speed and surface temperature conducted for the same district area. The CFD simulations are performed based on the 3D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations and the simulated period covers four consecutive days in July 2010. It is shown that the CFD simulations can predict air temperatures with an average absolute difference of 1.35 °C, wind speed with an average absolute difference of 0.57 m/s and surface temperatures with an average absolute difference of 2.31 °C. Based on the comparative results, conclusions are made regarding the performance of URANS for the selected application and possible reasons for deviations between measured and simulated results are discussed.

5.
Comput Methods Biomech Biomed Engin ; 22(4): 386-395, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773039

RESUMO

The aerodynamic features associated with the rotation of a cyclist's legs have long been a research topic for sport scientists and engineers, with studies in recent years shedding new light on the flow structures and drag trends. While the arm-crank rotation cycle of a hand-cyclist bears some resemblance to the leg rotation of a traditional cyclist, the aerodynamics around the athlete are fundamentally different due to the proximity and position of the athlete's torso with respect to their arms, especially since both arm-cranks move in phase with each other. This research investigates the impact of arm-crank position on the drag acting on a hand-cyclist and is applied to a hill descent position where the athlete is not pedalling. Four primary arm-crank positions, namely 3, 6, 9, and 12 o'clock of a Paralympic hand-cyclist were investigated with CFD for five yaw angles, namely 0°, 5°, 10°, 15°, and 20°. The results demonstrated that the 3 and 12 o'clock positions (when observed from the left side of the hand-cyclist) yielded the highest drag area at 0° yaw, while the 9 o'clock position yielded the lowest drag area for all yaw angles. This is in contrast to the 6 o'clock position traditionally held by hand-cyclists during a descent to reduce aerodynamic drag.


Assuntos
Braço/fisiopatologia , Ciclismo , Mãos/fisiopatologia , Esportes , Atletas , Simulação por Computador , Humanos , Pressão
6.
Environ Pollut ; 196: 176-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463712

RESUMO

Flow and dispersion of traffic-emitted pollutants were studied in a generic urban neighborhood for various avenue-tree layouts by employing 3D steady RANS simulations with the realizable k-ε turbulence model. In comparison to the tree-free situation quantitative and qualitative changes with flow reversal in the wind field were observed. Low to moderate increases (<13.2%) in the neighborhood-averaged pollutant concentration were found at pedestrian level. An approximately 1% increase in the neighborhood-averaged concentration was obtained with each percent of the street canyon volumes being occupied by vegetation for occupation fractions between 4 and 14%. The overall pattern of concentration changes relative to the tree-free situation was similar for all avenue-tree layouts. However, pronounced locally restricted decreases or increases in concentration (-87 to +1378%) occurred. The results indicate the necessity to account for existing or planned avenue-trees in neighborhood scaled is dispersion studies. Their consideration is prerequisite for reliable urban air quality assessment.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Emissões de Veículos/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Substâncias Perigosas , Humanos , Modelos Teóricos , Árvores , Caminhada , Vento
7.
Environ Pollut ; 196: 214-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463716

RESUMO

Flow and dispersion of traffic pollutants in a generic urban neighborhood with avenue-trees were investigated with Computational Fluid Dynamics (CFD). In Part I of this two-part contribution, quality assessment and assurance for CFD simulations in urban and vegetation configurations were addressed,before in Part II flow and dispersion in a generic urban neighborhood with multiple layouts of avenue trees were studied. In a first step, a grid sensitivity study was performed that inferred that a cell count of 20 per building height and 12 per canyon width is sufficient for reasonable grid insensitive solutions. Next, the performance of the realizable k-ε turbulence model in simulating urban flows and of the applied vegetation model in simulating flow and turbulence in trees was validated. Finally, based on simulations of street canyons with and without avenue-trees, an appropriate turbulent Schmidt number or modeling dispersion in the urban neighborhood was determined as Sc(t) =0.5.


Assuntos
Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental/métodos , Vento , Hidrodinâmica , Modelos Teóricos , Árvores
8.
J Biomech ; 44(9): 1695-701, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21497817

RESUMO

This study aims at investigating drag and convective heat transfer for cyclists at a high spatial resolution. Such an increased spatial resolution, when combined with flow-field data, can increase insight in drag reduction mechanisms and in the thermo-physiological response of cyclists related to heat stress and hygrothermal performance of clothing. Computational fluid dynamics (steady Reynolds-averaged Navier-Stokes) is used to evaluate the drag and convective heat transfer of 19 body segments of a cyclist for three different cyclist positions. The influence of wind speed on the drag is analysed, indicating a pronounced Reynolds number dependency on the drag, where more streamlined positions show a dependency up to higher Reynolds numbers. The drag and convective heat transfer coefficient (CHTC) of the body segments and the entire cyclist are compared for all positions at racing speeds, showing high drag values for the head, legs and arms and high CHTCs for the legs, arms, hands and feet. The drag areas of individual body segments differ markedly for different cyclist positions whereas the convective heat losses of the body segments are found to be less sensitive to the position. CHTC-wind speed correlations are derived, in which the power-law exponent does not differ significantly for the individual body segments for all positions, where an average value of 0.84 is found. Similar CFD studies can be performed to assess drag and CHTCs at a higher spatial resolution for applications in other sport disciplines, bicycle equipment design or to assess convective moisture transfer.


Assuntos
Ciclismo/fisiologia , Regulação da Temperatura Corporal/fisiologia , Simulação por Computador , Temperatura Alta , Humanos , Hidrodinâmica , Modelos Teóricos , Postura , Software , Vento
9.
J Biomech ; 43(7): 1262-8, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20171640

RESUMO

Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies. A fair agreement with wind-tunnel data was obtained for the predicted surface pressures, especially with LES. Despite the higher accuracy of LES, its much higher computational cost could make RANS more attractive for practical use in some situations. CFD is found to be a valuable tool to evaluate the drag of different cyclist positions and to investigate the influence of small adjustments in the cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, which cannot easily be obtained from wind-tunnel tests. This detailed information allows more insight in the causes of the drag force and provides better guidance for position improvements.


Assuntos
Ciclismo , Modelos Teóricos , Postura , Humanos
10.
J Biomech ; 43(12): 2281-7, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20488446

RESUMO

This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.


Assuntos
Ciclismo/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Hidrodinâmica , Manequins , Pressão , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA