Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10311-10316, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917923

RESUMO

Diamond's unique properties on the nanoscale make it one of the most important materials for use in biosensors and quantum computing and for components that can withstand the harsh environments of space. We synthesize oriented, faceted diamond particles by flash laser heating of glassy carbon at 16 GPa and 2300 K. Detailed transmission electron microscopy shows them to consist of a mosaic of diamond nanocrystals frequently joined at twin boundaries forming microtwins. Striking 3-fold translational periodicity was observed in both imaging and diffraction. This periodicity was shown to originate from nanodimensional wedge-shaped overlapping regions of twinned diamond and not from a possible 9R polytype, which has also been reported in other group IVa elements and water ice. Extended bilayers of hexagonal layer stacking were observed, forming lonsdaleite nanolaminates. The particles exhibited optical fluorescence with a rapid quench time (<1 ns) attributed to their unique twinned microstructure.

2.
Chemistry ; 27(57): 14217-14224, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459046

RESUMO

Multi-anvil and laser-heated diamond anvil methods have been used to subject Ge and Si mixtures to pressures and temperatures of between 12 and 17 GPa and 1500-1800 K, respectively. Synchrotron angle dispersive X-ray diffraction, precession electron diffraction and chemical analysis using electron microscopy, reveal recovery at ambient pressure of hexagonal Ge-Si solid solutions (P63 /mmc). Taken together, the multi-anvil and diamond anvil results reveal that hexagonal solid solutions can be prepared for all Ge-Si compositions. This hexagonal class of solid solutions constitutes a significant expansion of the bulk Ge-Si solid solution family, and is of interest for optoelectronic applications.

3.
Small ; 16(50): e2004695, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150739

RESUMO

Diamond is an attractive material due to its extreme hardness, high thermal conductivity, quantum optical, and biomedical applications. There is still much that is not understood about how diamonds form, particularly at room temperature and without catalysts. In this work, a new route for the formation of nanocrystalline diamond and the diamond-like phase lonsdaleite is presented. Both diamond phases are found to form together within bands with a core-shell structure following the high pressure treatment of a glassy carbon precursor at room temperature. The crystallographic arrangements of the diamond phases revealed that shear is the driving force for their formation and growth. This study gives new understanding of how shear can lead to crystallization in materials and helps elucidate how diamonds can form on Earth, in meteorite impacts and on other planets. Finally, the new shear induced formation mechanism works at room temperature, a key finding that may enable diamond and other technically important nanomaterials to be synthesized more readily.

4.
Phys Rev Lett ; 122(18): 187202, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144879

RESUMO

In the bulk, LaCoO_{3} (LCO) is a paramagnet, yet the low-temperature ferromagnetism (FM) is observed in tensile strained thin films, and its origin remains unresolved. Here, we quantitatively measured the distribution of atomic density and magnetization in LCO films by polarized neutron reflectometry (PNR) and found that the LCO layers near the heterointerfaces exhibit a reduced magnetization but an enhanced atomic density, whereas the film's interior (i.e., its film bulk) shows the opposite trend. We attribute the nonuniformity to the symmetry mismatch at the interface, which induces a structural distortion related to the ferroelasticity of LCO. This assertion is tested by systematic application of hydrostatic pressure during the PNR experiments. The magnetization can be controlled at a rate of -20.4% per GPa. These results provide unique insights into mechanisms driving FM in strained LCO films while offering a tantalizing observation that tunable deformation of the CoO_{6} octahedra in combination with the ferroelastic order parameter.

5.
Proc Natl Acad Sci U S A ; 112(39): 12042-5, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26371317

RESUMO

Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.

6.
Proc Natl Acad Sci U S A ; 110(26): 10552-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23757495

RESUMO

The motif of distinct H2O molecules in H-bonded networks is believed to persist up to the densest molecular phase of ice. At even higher pressures, where the molecule dissociates, it is generally assumed that the proton remains localized within these same networks. We report neutron-diffraction measurements on D2O that reveal the location of the D atoms directly up to 52 GPa, a pressure regime not previously accessible to this technique. The data show the onset of a structural change at ∼13 GPa and cannot be described by the conventional network structure of ice VII above ∼26 GPa. Our measurements are consistent with substantial deuteron density in the octahedral, interstitial voids of the oxygen lattice. The observation of this "interstitial" ice VII form provides a framework for understanding the evolution of hydrogen bonding in ice that contrasts with the conventional picture. It may also be a precursor for the superionic phase reported at even higher pressure with important consequences for our understanding of dense matter and planetary interiors.

7.
Angew Chem Int Ed Engl ; 54(50): 15109-12, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26509919

RESUMO

Alloy and nitride solid solutions are prominent for structural, energy and information processing applications. There are frequently however barriers to making them. We remove barriers to reactivity here using pressure with a new synthetic approach. We target pressures where the reasons for cubic endmember nitride instability can become the driving force for cubic nitride solid solution stability. Using this approach we form a novel rocksalt Mg0.4 Fe0.6 N solid solution at between 15 and 23 GPa and up to 2500 K. This is a system where, neither an alloy nor a nitride solid solution form at ambient conditions and bulk MgN and FeN endmembers do not form, either at ambient or at high pressure. The new nitride is formed, by removing endmember lattice mismatch with pressure, allowing a stabilizing redistribution of valence electrons upon heating. This approach can be employed for a range of normally unreactive systems. Mg, Fe and enhanced nitrogen presence, may also indicate a richer reaction chemistry in our planets interior.

8.
Phys Rev Lett ; 110(21): 217402, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745931

RESUMO

Phase IV of dense solid hydrogen has been identified by its infrared spectrum using high-pressure synchrotron radiation techniques. The spectrum exhibits a sharp vibron band at higher frequency and lower intensity than that for phase III, indicating the stability of molecular H(2) with decreased intermolecular interactions and charge transfer between molecules. A low-frequency vibron having a strong negative pressure shift indicative of strongly interacting molecules is also observed. The character of the spectrum is consistent with an anisotropic, mixed layer structure related to those recently predicted theoretically. Phase IV was found to be stable from 220 GPa (300 K) to at least 340 GPa (near 200 K), with the I-III-IV triple point located. Infrared transmission observed to the lowest photon energies measured places constraints on the electronic properties of the phase.

9.
Sci Rep ; 13(1): 4741, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959351

RESUMO

Over the last 60 years, the diamond anvil cell (DAC) has emerged as the tool of choice in high pressure science because materials can be studied at megabar pressures using X-ray and spectroscopic probes. In contrast, the pressure range for neutron diffraction has been limited due to low neutron flux even at the strongest sources and the resulting large sample sizes. Here, we introduce a neutron DAC that enables break-out of the previously limited pressure range. Key elements are ball-bearing guides for improved mechanical stability, gem-quality synthetic diamonds with novel anvil support and improved in-seat collimation. We demonstrate a pressure record of 1.15 Mbar and crystallographic analysis at 1 Mbar on the example of nickel. Additionally, insights into the phase behavior of graphite to 0.5 Mbar are described. These technical and analytical developments will further allow structural studies on low-Z materials that are difficult to characterize by X-rays.

10.
J Phys Chem B ; 126(13): 2530-2537, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332775

RESUMO

Although long-chain aliphatic hydrocarbons are documented in meteorites, their origin is poorly understood. A key question is whether they are pristine or a byproduct of terrestrial alteration? To understand if these long-chain hydrocarbons are indigenous, it will be important to explore their thermodynamic and mechanical stability at conditions experienced by extraterrestrial objects during atmospheric entry and passage. Extreme pressures and temperatures experienced by meteorites are likely to alter the molecular organization of these long-chain hydrocarbons. These structural changes associated with extreme conditions are often documented via laboratory-based Raman spectroscopic measurements. So far, Raman spectroscopic measurements have investigated the effect of static compression on the aliphatic hydrocarbons. The effect of temperature on the structural changes remains poorly explored. To bridge this gap, in this study, we have explored the behavior of two aliphatic hydrocarbons at simultaneously high pressures and temperatures. We have used a resistively heated diamond anvil cell. On compression to moderate pressures, the appearance of new vibrational modes in the low-energy region confirms prior studies and is related to the bending of the linear chains. Upon heating to ∼220 °C, we note that the new low-energy mode undergoes softening. The mode softening is likely due to the combination of unbending of the alkane chain and mode anharmonicity.


Assuntos
Alcanos , Hidrocarbonetos , Hidrocarbonetos/química , Pressão , Análise Espectral Raman , Temperatura
11.
J Chem Phys ; 134(12): 124517, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21456686

RESUMO

The sound velocity in polycrystalline ice was measured as a function of pressure at room temperature to 100 GPa, through the phase field of ice VII and crossing the ice X transition, by Brillouin scattering in order to examine the elasticity, compression mechanism, and structural transitions in this pressure range. In particular, we focused on previously proposed phase transitions below 60 GPa. Throughout this pressure range, we find no evidence for anomalous changes in compressibility, and the sound velocities and elastic moduli do not exhibit measurable discontinuous shifts with pressure. Subtle changes in the pressure dependence of the bulk modulus at intermediate pressures can be attributed to high shear stresses at these compressions. The C(11) and C(12) moduli are consistent with previously reported results to 40 GPa and increase monotonically at higher pressures.


Assuntos
Gelo/análise , Cristalização , Elasticidade , Transição de Fase , Pressão , Estresse Mecânico
12.
J Chem Phys ; 133(8): 084501, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20815574

RESUMO

Measurements for Sn, made using the laser-heated diamond cell, are reported that extend the melting curve to 68 GPa and 2300 K. Initially the melting temperature of Sn increases linearly with increasing pressure (dT/dP approximately 40 K/GPa) and near 38 GPa (2200 K) the melting curve flattens (dT/dP approximately 0), indicating a zero volume phase change at melting. The results are in good agreement with previously reported shock melting studies. In comparison to Sn the melting curve of Pb is relatively linear to 100 GPa, the highest pressure at which measurements have been made.

13.
Acta Crystallogr B ; 66(Pt 3): 323-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20484803

RESUMO

The crystal structure of the high-pressure phase of bismuth gallium oxide, Bi(2)Ga(4)O(9), was determined up to 30.5 (5) GPa from in situ single-crystal in-house and synchrotron X-ray diffraction. Structures were refined at ambient conditions and at pressures of 3.3 (2), 6.2 (3), 8.9 (1) and 14.9 (3) GPa for the low-pressure phase, and at 21.4 (5) and 30.5 (5) GPa for the high-pressure phase. The mode-Grüneisen parameters for the Raman modes of the low-pressure structure and the changes of the modes induced by the phase transition were obtained from Raman spectroscopic measurements. Complementary quantum-mechanical calculations based on density-functional theory were performed between 0 and 50 GPa. The phase transition is driven by a large spontaneous displacement of one O atom from a fully constrained position. The density-functional theory (DFT) model confirmed the persistence of the stereochemical activity of the lone electron pair up to at least 50 GPa in accordance with the crystal structure of the high-pressure phase. While the stereochemical activity of the lone electron pair of Bi(3+) is reduced at increasing pressure, a symmetrization of the bismuth coordination was not observed in this pressure range. This shows an unexpected stability of the localization of the lone electron pair and of its stereochemical activity at high pressure.

14.
Rev Sci Instrum ; 89(9): 092902, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278728

RESUMO

A diamond cell optimized for single-crystal neutron diffraction is described. It is adapted for work at several of the single-crystal diffractometers of the Spallation Neutron Source and the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). A simple spring design improves portability across the facilities and affords load maintenance from offline pressurization and during temperature cycling. Compared to earlier prototypes, pressure stability of polycrystalline diamond (Versimax®) has been increased through double-conical designs and ease of use has been improved through changes to seat and piston setups. These anvils allow ∼30%-40% taller samples than possible with comparable single-crystal anvils. Hydrostaticity and the important absence of shear pressure gradients have been established with the use of glycerin as a pressure medium. Large single-crystal synthetic diamonds have also been used for the first time with such a clamp-diamond anvil cell for pressures close to 20 GPa. The cell is made from a copper beryllium alloy and sized to fit into ORNL's magnets for future ultra-low temperature and high-field studies. We show examples from the Spallation Neutron Source's SNAP and CORELLI beamlines and the High Flux Isotope Reactor's HB-3A and IMAGINE beamlines.

15.
Sci Rep ; 6: 37232, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897174

RESUMO

Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defined material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100 GPa and 400 °C. The nanocrystalline material was recovered at ambient and analysed using diffraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic flow under compression in the diamond anvil cell, which lowers the energy barrier by "locking in" favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by first principles calculations of transformation pathways and explains why the new phase is found in an annular region. Our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.

16.
Rev Sci Instrum ; 86(7): 072201, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233341

RESUMO

An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

18.
Rev Sci Instrum ; 83(6): 063905, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755641

RESUMO

A new method for measuring melting temperatures in the laser-heated diamond cell is described. This method circumvents previous problems associated with the sample instability, thermal runaway, and chemical reactions. Samples were heated with a single, 20 milliseconds rectangular pulse from a fiber laser, monitoring their thermal response with a fast photomultiplier while measuring the steady state temperature with a CCD spectrometer. The samples were recovered and analyzed using scanning electron microscopy. Focused ion beam milling allowed to examine both the lateral and the vertical solid-liquid boundaries. Ambient pressure tests reproducibly yielded the known melting temperatures of rhenium and molybdenum. Melting of Re was measured to 50 GPa, a 5-fold extension of previous data. The refractory character of Re is drastically enhanced by pressure, in contrast to Mo.

19.
Phys Rev Lett ; 99(22): 225701, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18233298

RESUMO

The melting curve of nitrogen was measured up to 71 GPa, a fourfold increase in pressure over previous measurements. The measurements were made using the laser-heated diamond anvil cell and melting was detected in situ by the laser speckle method. The melting temperature rises linearly up to a maximum at 50 GPa and 1920 K, and with increasing pressure suddenly decreases linearly to 1400 K at 71 GPa. This sharp drop in the melting slope (dT/dP) above 50 GPa indicates the appearance of a liquid denser than the solid and of a liquid-liquid phase transition. The sharpness of the changes suggests that the transition is first order and is a liquid-liquid polymer transition. This conclusion is consistent with earlier theoretical studies and experimental evidence that pressure transforms molecular nitrogen into a chainlike polymeric form.

20.
Phys Rev Lett ; 95(25): 257801, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16384508

RESUMO

Measurements made in a laser heated diamond-anvil cell are reported that extend the melting curve of Xe to 80 GPa and 3350 K. The steep lowering of the melting slope (dT/dP) that occurs near 17 GPa and 2750 K results from the hybridization of the 5p-like valence and 5p-like conduction states with the formation of clusters in the liquid having icosahedral short-range order (ISRO).


Assuntos
Xenônio/análise , Xenônio/química , Temperatura Alta , Lasers , Pressão , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA