Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Mol Cell ; 76(5): 826-837.e11, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31607545

RESUMO

The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Marcação de Genes/métodos , Estabilidade de RNA , Vírus de RNA/enzimologia , RNA Viral/metabolismo , Células A549 , Animais , Proteínas Associadas a CRISPR/genética , Chlorocebus aethiops , Cães , Escherichia coli/enzimologia , Escherichia coli/genética , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Vírus de RNA/genética , RNA Viral/genética , Células Vero
2.
Nature ; 582(7811): 277-282, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32349121

RESUMO

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas Analíticas Microfluídicas/métodos , Viroses/diagnóstico , Viroses/virologia , Animais , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Farmacorresistência Viral/genética , Genoma Viral/genética , HIV/classificação , HIV/genética , HIV/isolamento & purificação , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , RNA Guia de Cinetoplastídeos/genética , SARS-CoV-2 , Sensibilidade e Especificidade
3.
Wound Repair Regen ; 25(5): 774-791, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28922523

RESUMO

Chronic wounds affect 12-15% of patients with diabetes and are associated with a drastic decrease in their quality of life. Here, we demonstrate that purified mature naive B220+ /CD19+ /IgM+ /IgD+ B cells improve healing of acute and diabetic murine wounds after a single topical application. B cell treatment significantly accelerated acute wound closure by 2-3 days in wild-type mice and 5-6 days in obese diabetic mice. The treatment led to full closure in 43% of chronic diabetic wounds, as compared to only 5% in saline-treated controls. Applying equivalent numbers of T cells or disrupted B cells failed to reproduce these effects, indicating that live B cells mediated pro-healing responses. Topically applied B cell treatment was associated with significantly reduced scar size, increased collagen deposition and maturation, enhanced angiogenesis, and increased nerve growth into and under the healing wound. ß-III tubulin+ nerve endings in scars of wounds treated acutely with B cells showed increased relative expression of growth-associated protein 43. The improved healing associated with B cell treatment was supported by significantly increased fibroblast proliferation and decreased apoptosis in the wound bed and edges, altered kinetics of neutrophil infiltration, as well as an increase in TGF-ß and a significant reduction in MMP2 expression in wound granulation tissue. Our findings indicate that the timeline and efficacy of wound healing can be experimentally manipulated through the direct application of mature, naive B cells, which effectively modify the balance of mature immune cell populations within the wound microenvironment and accelerate the healing process.


Assuntos
Linfócitos B , Terapia Baseada em Transplante de Células e Tecidos/métodos , Diabetes Mellitus Experimental/complicações , Dermatopatias/terapia , Pele/patologia , Cicatrização/imunologia , Doença Aguda , Animais , Biópsia , Sobrevivência Celular , Doença Crônica , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pele/imunologia , Dermatopatias/etiologia , Dermatopatias/patologia
4.
Nat Biomed Eng ; 6(8): 932-943, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35637389

RESUMO

The widespread transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for rapid nucleic acid diagnostics that are easy to use outside of centralized clinical laboratories. Here we report the development and performance benchmarking of Cas13-based nucleic acid assays leveraging lyophilised reagents and fast sample inactivation at ambient temperature. The assays, which we named SHINEv.2 (for 'streamlined highlighting of infections to navigate epidemics, version 2'), simplify the previously reported RNA-extraction-free SHINEv.1 technology by eliminating heating steps and the need for cold storage of the reagents. SHINEv.2 detected SARS-CoV-2 in nasopharyngeal samples with 90.5% sensitivity and 100% specificity (benchmarked against the reverse transcription quantitative polymerase chain reaction) in less than 90 min, using lateral-flow technology and incubation in a heat block at 37 °C. SHINEv.2 also allows for the visual discrimination of the Alpha, Beta, Gamma, Delta and Omicron SARS-CoV-2 variants, and can be run without performance losses by using body heat. Accurate, easy-to-use and equipment-free nucleic acid assays could facilitate wider testing for SARS-CoV-2 and other pathogens in point-of-care and at-home settings.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , COVID-19/virologia , Teste para COVID-19 , Proteínas Associadas a CRISPR , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
5.
medRxiv ; 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34751276

RESUMO

The COVID-19 pandemic, and the recent rise and widespread transmission of SARS-CoV-2 Variants of Concern (VOCs), have demonstrated the need for ubiquitous nucleic acid testing outside of centralized clinical laboratories. Here, we develop SHINEv2, a Cas13-based nucleic acid diagnostic that combines quick and ambient temperature sample processing and lyophilized reagents to greatly simplify the test procedure and assay distribution. We benchmarked a SHINEv2 assay for SARS-CoV-2 detection against state-of-the-art antigen-capture tests using 96 patient samples, demonstrating 50-fold greater sensitivity and 100% specificity. We designed SHINEv2 assays for discriminating the Alpha, Beta, Gamma and Delta VOCs, which can be read out visually using lateral flow technology. We further demonstrate that our assays can be performed without any equipment in less than 90 minutes. SHINEv2 represents an important advance towards rapid nucleic acid tests that can be performed in any location.

6.
Viruses ; 13(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34452470

RESUMO

While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE-detected in the Yoruba population of Nigeria-conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the "emerging" nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz's critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts.


Assuntos
Planejamento em Desastres , Febre Lassa/epidemiologia , Vírus Lassa/fisiologia , África Ocidental/epidemiologia , Planejamento em Desastres/métodos , Humanos , Febre Lassa/genética , Febre Lassa/prevenção & controle , Febre Lassa/virologia , Vírus Lassa/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Nigéria/epidemiologia , Pandemias , Polimorfismo Genético , Receptores Virais/genética , Receptores Virais/imunologia
7.
bioRxiv ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32511415

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (SHERLOCK and HUDSON Integration to Navigate Epidemics), a sensitive and specific integrated diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We combine the steps of SHERLOCK into a single-step reaction and optimize HUDSON to accelerate viral inactivation in nasopharyngeal swabs and saliva. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-PCR with a sample-to-answer time of 50 minutes. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.

8.
Nat Commun ; 11(1): 5921, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219225

RESUMO

The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (Streamlined Highlighting of Infections to Navigate Epidemics), a sensitive and specific diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We identify the optimal conditions to allow RPA-based amplification and Cas13-based detection to occur in a single step, simplifying assay preparation and reducing run-time. We improve HUDSON to rapidly inactivate viruses in nasopharyngeal swabs and saliva in 10 min. SHINE's results can be visualized with an in-tube fluorescent readout - reducing contamination risk as amplification reaction tubes remain sealed - and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-qPCR with a sample-to-answer time of 50 min. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities.


Assuntos
Betacoronavirus/isolamento & purificação , Proteínas Associadas a CRISPR/metabolismo , Técnicas de Diagnóstico Molecular/métodos , Bioensaio , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Fluorescência , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2
9.
Nat Commun ; 11(1): 4131, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807807

RESUMO

Recent outbreaks of viral hemorrhagic fevers (VHFs), including Ebola virus disease (EVD) and Lassa fever (LF), highlight the urgent need for sensitive, deployable tests to diagnose these devastating human diseases. Here we develop CRISPR-Cas13a-based (SHERLOCK) diagnostics targeting Ebola virus (EBOV) and Lassa virus (LASV), with both fluorescent and lateral flow readouts. We demonstrate on laboratory and clinical samples the sensitivity of these assays and the capacity of the SHERLOCK platform to handle virus-specific diagnostic challenges. We perform safety testing to demonstrate the efficacy of our HUDSON protocol in heat-inactivating VHF viruses before SHERLOCK testing, eliminating the need for an extraction. We develop a user-friendly protocol and mobile application (HandLens) to report results, facilitating SHERLOCK's use in endemic regions. Finally, we successfully deploy our tests in Sierra Leone and Nigeria in response to recent outbreaks.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/diagnóstico , Febre Lassa/diagnóstico , Vírus Lassa/patogenicidade , Anticorpos Antivirais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Febre Lassa/virologia , Vírus Lassa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA