Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612694

RESUMO

KH-type splicing regulatory protein (KSRP) is a single-stranded nucleic acid-binding protein with multiple functions. It is known to bind AU-rich motifs within the 3'-untranslated region of mRNA species, which in many cases encode dynamically regulated proteins like cytokines. In the present study, we investigated the role of KSRP for the immunophenotype of macrophages using bone marrow-derived macrophages (BMDM) from wild-type (WT) and KSRP-/- mice. RNA sequencing revealed that KSRP-/- BMDM displayed significantly higher mRNA expression levels of genes involved in inflammatory and immune responses, particularly type I interferon responses, following LPS stimulation. In line, time kinetics studies revealed increased levels of interferon-γ (IFN-γ), interleukin (IL)-1ß and IL-6 mRNA in KSRP-/- macrophages after 6 h subsequent to LPS stimulation as compared to WT cultures. At the protein level, KSRP-/- BMDM displayed higher levels of these cytokines after overnight stimulation. Matching results were observed for primary peritoneal macrophages of KSRP-/- mice. These showed higher IL-6, tumor necrosis factor-α (TNF-α), C-X-C motif chemokine 1 (CXCL1) and CC-chemokine ligand 5 (CCL5) protein levels in response to LPS stimulation than the WT controls. As macrophages play a key role in sepsis, the in vivo relevance of KSRP deficiency for cytokine/chemokine production was analyzed in an acute inflammation model. In agreement with our in vitro findings, KSRP-deficient animals showed higher cytokine production upon LPS administration in comparison to WT mice. Taken together, these findings demonstrate that KSRP constitutes an important negative regulator of cytokine expression in macrophages.


Assuntos
Proteínas de Transporte , Interleucina-6 , Animais , Camundongos , Interleucina-6/genética , Lipopolissacarídeos , Macrófagos , Citocinas , Regiões 3' não Traduzidas
2.
Adv Mater ; : e2404784, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38958110

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA