Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452540

RESUMO

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Assuntos
Variação Genética/genética , Hérnia Diafragmática/diagnóstico por imagem , Hérnia Diafragmática/genética , Deformidades Congênitas dos Membros/diagnóstico por imagem , Deformidades Congênitas dos Membros/genética , Proteínas de Membrana/genética , Adulto , Sequência de Aminoácidos , Criança , Estudos de Coortes , Eletroencefalografia/métodos , Fácies , Hérnia Diafragmática/fisiopatologia , Humanos , Recém-Nascido , Deformidades Congênitas dos Membros/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino
2.
Blood ; 119(25): 6016-24, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22451424

RESUMO

Familial hemophagocytic lymphohistiocytosis (FHL) is a genetically determined hyperinflammatory syndrome caused by uncontrolled immune response mediated by T-lymphocytes, natural killer (NK) cells, and macrophages. STXBP2 mutations have recently been associated with FHL5. To better characterize the genetic and clinical spectrum of FHL5, we analyzed a cohort of 185 patients with suspected FHL for mutations in STXBP2. We detected biallelic mutations in 37 patients from 28 families of various ethnic origins. Missense mutations and mutations affecting 1 of the exon 15 splice sites were the predominant changes detectable in this cohort. Patients with exon 15 splice-site mutations (n = 13) developed clinical manifestations significantly later than patients with other mutations (median age, 4.1 year vs 2 months) and showed less severe impairment of degranulation and cytotoxic function of NK cells and CTLs. Patients with FHL5 showed several atypical features, including sensorineural hearing deficit, abnormal bleeding, and, most frequently, severe diarrhea that was only present in early-onset disease. In conclusion, we report the largest cohort of patients with FHL5 so far, describe an extended disease spectrum, and demonstrate for the first time a clear genotype-phenotype correlation.


Assuntos
Linfo-Histiocitose Hemofagocítica/genética , Proteínas Munc18/genética , Mutação , Adolescente , Adulto , Teste de Degranulação de Basófilos , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Epistasia Genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Linfo-Histiocitose Hemofagocítica/classificação , Linfo-Histiocitose Hemofagocítica/etnologia , Masculino , Modelos Biológicos , Proteínas Munc18/fisiologia , Mutação/fisiologia , Proteínas Qa-SNARE/genética , Adulto Jovem
3.
Hum Mutat ; 33(6): 949-59, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22396310

RESUMO

Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.


Assuntos
Dinamina II/genética , Genes Dominantes , Estudos de Associação Genética , Mutação , Miopatias Congênitas Estruturais/genética , Sequência de Aminoácidos , Dinamina II/química , Humanos , Dados de Sequência Molecular , Miopatias Congênitas Estruturais/diagnóstico , Polimorfismo Genético , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA