Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 620(7974): 582-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558875

RESUMO

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análise
2.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854211

RESUMO

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce
3.
Glob Chang Biol ; 28(15): 4620-4632, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570183

RESUMO

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , Nova Zelândia , Caramujos
4.
Front Ecol Environ ; 20(1): 49-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873359

RESUMO

Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.

5.
Bioscience ; 70(5): 427-438, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32440024

RESUMO

Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and recognizes variability in community composition. Using intermittent rivers-prevalent and highly dynamic ecosystems that sometimes dry-we develop a conceptual model to illustrate how dispersal limitation and flow intermittence influence the performance of biological indices. We produce a methodological framework integrating physical- and organismal-based dispersal measurements into predictive modeling, to inform development of dynamic ecological quality assessments. Such metacommunity-based approaches could be extended to other ecosystems and are required to underpin our capacity to monitor and protect ecosystems threatened under future environmental changes.

6.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30628191

RESUMO

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Assuntos
Nutrientes/análise , Compostos Orgânicos/análise , Rios/química , Biofilmes/crescimento & desenvolvimento , Disponibilidade Biológica , Clima , Mudança Climática , Sedimentos Geológicos/química , Nitratos/análise , Folhas de Planta/química
7.
Mol Ecol ; 26(21): 6085-6099, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28881498

RESUMO

Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.


Assuntos
Biodiversidade , Clima , Insetos/classificação , Rios , Animais , Europa (Continente) , Geografia , Haplótipos , Filogenia , Especificidade da Espécie
8.
Ecology ; 98(5): 1201-1216, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28144975

RESUMO

Temporal environmental fluctuations, such as seasonality, exert strong controls on biodiversity. While the effects of seasonality are well known, the predictability of fluctuations across years may influence seasonality in ways that are less well understood. The ability of a habitat to support unique, non-nested assemblages of species at different times of the year should depend on both seasonality (occurrence of events at specific periods of the year) and predictability (the reliability of event recurrence) of characteristic ecological conditions. Drawing on tools from wavelet analysis and information theory, we developed a framework for quantifying both seasonality and predictability of habitats, and applied this using global long-term rainfall data. Our analysis predicted that temporal beta diversity should be maximized in highly predictable and highly seasonal climates, and that low degrees of seasonality, predictability, or both would lower diversity in characteristic ways. Using stream invertebrate communities as a case study, we demonstrated that temporal species diversity, as exhibited by community turnover, was determined by a balance between temporal environmental variability (seasonality) and the reliability of this variability (predictability). Communities in highly seasonal mediterranean environments exhibited strong oscillations in community structure, with turnover from one unique community type to another across seasons, whereas communities in aseasonal New Zealand environments fluctuated randomly. Understanding the influence of seasonal and other temporal scales of environmental oscillations on diversity is not complete without a clear understanding of their predictability, and our framework provides tools for examining these trends at a variety of temporal scales, seasonal and beyond. Given the uncertainty of future climates, seasonality and predictability are critical considerations for both basic science and management of ecosystems (e.g., dam operations, bioassessment) spanning gradients of climatic variability.


Assuntos
Biodiversidade , Ecossistema , Nova Zelândia , Reprodutibilidade dos Testes , Estações do Ano
9.
Biol Lett ; 12(4)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27072403

RESUMO

Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur.


Assuntos
Água Doce , Insetos/fisiologia , Espécies Introduzidas , Animais , Organismos Aquáticos , Ecossistema
10.
Ecology ; 96(9): 2458-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594702

RESUMO

The effect of stressors on biodiversity can vary in relation to the degree to which biological communities have adapted over evolutionary time. We compared the responses of functional features of stream insect communities along chronic stress gradients with contrasting time persistence. Water salinity and land use intensification were used as examples of natural (long-term persistent) and anthropogenic (short-term persistent) stressors, respectively. A new trait-based approach was applied to quantify functional diversity components and functional redundancy within the same multidimensional space, using metrics at the taxon and community levels. We found similar functional responses along natural and anthropogenic stress gradients. In both cases, the mean taxon functional richness and functional similarity between taxa increased with stress, whereas community functional richness and functional redundancy decreased. Despite the differences in evolutionary persistence, both chronic stressors act as strong nonrandom environmental filters, producing convergent functional responses. These results can improve our ability to predict functional effects of novel stressors at ecoloiical and evolutionary scales.


Assuntos
Ecossistema , Atividades Humanas , Insetos/fisiologia , Modelos Biológicos , Rios/química , Agricultura , Animais , Aquecimento Global , Humanos , Salinidade , Estresse Fisiológico , Água/química
11.
Sci Total Environ ; 912: 169561, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142994

RESUMO

The use of urban wastewater reclaimed water has recently increased across the globe to restore stream environmental flows and mitigate the effects of water scarcity. Reclaimed water is disinfected using different treatments, but their effects into the receiving rivers are little studied. Physiological bioassays and biomarkers can detect sub-lethal effects on target species, but do not provide information on changes in community structure. In contrast, official monitoring programs use community structure information but often at coarse taxonomic resolution level that may fail to detect species level impacts. Here, we combined commonly used biomonitoring approaches from organism physiology to community species composition to scan a broad range of effects of disinfection of reclaimed water by UV-light only and both UV/chlorine on the biota. We (1) performed bioassays in one laboratory species (water flea Daphnia magna) and measured biomarkers in two wild species (caddisfly Hydropsyche exocellata and the barbel Luciobarbus graellsii), (2) calculated standard indices of biotic quality (IBQ) for diatoms, benthic macroinvertebrates, and fishes, and (3) analysed community species composition of eukaryotes determined by Cytochrome Oxidase C subunit I (cox1) metabarcoding. Only the UV/chlorine treatment caused significant changes in feeding rates of D. magna and reduced antioxidant defenses, increased anaerobic metabolism and altered the levels of lipid peroxidiation in H. exocellata. However, inputs of reclaimed water were significantly associated with a greater proportion of circulating neutrophils and LG-PAS cells in L. graellsii. Despite IBQ did not discriminate between the two water treatments, metabarcoding data detected community composition changes upon exposure to UV/chlorine reclaimed water. Overall, despite the effects of UV/chlorine-treated water were transient, our study suggests that UV-light treated is less harmful for freshwater biota than UV/chlorine-treated reclaimed water, but those effects depend of the organizational level.


Assuntos
Águas Residuárias , Purificação da Água , Animais , Cloro/química , Insetos , Desinfecção , Cloretos , Biota , Rios
12.
Ecology ; 105(2): e4219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037301

RESUMO

A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, ß = 0.23) and population synchrony (ß = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (ß = 0.73) to secondary consumers (ß = 0.54), to primary consumers (ß = 0.30) to producers (ß = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade , Água Doce , Fatores de Tempo
13.
Sci Data ; 11(1): 601, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849407

RESUMO

Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.


Assuntos
Invertebrados , Rios , Animais , Europa (Continente) , Água Doce , Dinâmica Populacional , Qualidade da Água , Biodiversidade , Ecossistema
14.
Nat Ecol Evol ; 8(3): 430-441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278985

RESUMO

Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Invertebrados , Rios , Europa (Continente)
15.
Sci Total Environ ; 903: 166254, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574055

RESUMO

Temporary rivers are widespread in the Mediterranean region and impose a challenge for the implementation of the Water Framework Directive (WFD) and other environmental regulations. Surprisingly, an overarching analysis of their ecological status and the stressors affecting them is yet missing. We compiled data on the ecological status of 1504 temporary rivers in seven European Mediterranean region countries and related their ecological status (1) to publicly available data on pressures from the European WISE-WFD dataset, and (2) to seven more specific stressors modelled on a sub-catchment scale. More than 50 % of the temporary water bodies in the Mediterranean countries reached good or even high ecological status. In general, status classes derived from phytobenthos and macrophyte assessment were higher than those derived from the assessment of benthic invertebrates or fish. Of the more generally defined pressures reported to the WISE-WFD database, the most relevant for temporary rivers were 'diffuse agricultural' and 'point urban waste water'. Of the modelled more specific stressors, agricultural land use best explained overall ecological status, followed by total nitrogen load, and urban land use, while toxic substances, total phosphorus load and hydrological stressors were less relevant. However, stressors differed in relevance, with total nitrogen being most important for macrophytes, and agricultural land use for phytobenthos, benthic invertebrates and fish. For macrophytes, ecological quality increased with stressor intensity. The results underline the overarching effect of land use intensity for the ecological status of temporary water bodies. However, assessment results do not sufficiently reflect hydrological stress, most likely as the biological indicators used to evaluate these systems were designed for perennial water bodies and thus mainly target land use and nutrient impacts. We conclude that biomonitoring systems need to be updated or newly developed to better account for the specific situation of temporary water bodies.

16.
Sci Total Environ ; 804: 150022, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517322

RESUMO

As complex mosaics of lotic, lentic, and terrestrial habitats, intermittent rivers and ephemeral streams (IRES) support high biodiversity. Despite their ecological importance, IRES are poorly represented in routine monitoring programs, but recent recognition of their considerable-and increasing-spatiotemporal extent is motivating efforts to better represent IRES in ecological status assessments. We examine response patterns of aquatic macroinvertebrate communities and taxa to flow intermittence (FI) across three European climatic regions. We used self-organizing map (SOM) to ordinate and classify sampling sites based on community structure in regions with continental, Mediterranean and oceanic climates. The SOM passively introduced FI, quantified as the mean annual % flow, and visualized its variability across classified communities, revealing a clear association between community structure and FI in all regions. Indicator species analysis identified taxa indicative of low, intermediate and high FI. In the continental region, the amphipod Niphargus was indicative of high FI and was associated with groundwater-fed IRES, whereas indicators of Mediterranean IRES comprised Odonata, Coleoptera and Heteroptera taxa, which favor lentic conditions. In the oceanic region, taxa indicative of relatively high FI included leuctrid stoneflies and a limnephilid caddisfly, likely reflecting the colonization of IRES by aerial adults from nearby perennial reaches. The Diptera families Chironomidae and Simuliidae showed contrasting FI preferences among regions, reflecting environmental heterogeneity between regions and the coarse taxonomic resolution to which these organisms were identified. These region-specific community and taxon responses of aquatic biota to FI highlight the need to adapt standard biotic indices to enable effective ecological status assessments in IRES.


Assuntos
Biomarcadores Ambientais , Rios , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Insetos , Invertebrados
17.
Sci Total Environ ; 842: 156689, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724793

RESUMO

Humans have severely altered freshwater ecosystems globally, causing a loss of biodiversity. Regulatory frameworks, like the Water Framework Directive, have been developed to support actions that halt and reverse this loss. These frameworks use typology systems that summarize freshwater ecosystems into environmentally delineated types. Within types, ecosystems that are minimally impacted by human activities, i.e., in reference conditions, are expected to be similar concerning physical, chemical, and biological characteristics. This assumption is critical when water quality assessments rely on comparisons to type-specific reference conditions. Lyche Solheim et al. (2019) developed a pan-European river typology system, the Broad River Types, that unifies the national Water Framework Directive typology systems and is gaining traction within the research community. However, it is unknown how similar biological communities are within these individual Broad River Types. We used analysis of similarities and classification strength analysis to examine if the Broad River Types delineate distinct macroinvertebrate communities across Europe and whether they outperform two ecoregional approaches: the European Biogeographical Regions and Illies' Freshwater Ecoregions. We determined indicator and typical taxa for the types of all three typology systems and evaluated their distinctiveness. All three typology systems captured more variation in macroinvertebrate communities than random combinations of sites. The results were similar among typology systems, but the Broad River Types always performed worse than either the Biogeographic Regions or Illies' Freshwater Ecoregions. Despite reaching statistical significance, the statistics of analysis of similarity and classification strength were low in all tests indicating substantial overlap among the macroinvertebrate communities of different types. We conclude that the Broad River Types do not represent an improvement upon existing freshwater typologies when used to delineate macroinvertebrate communities and we propose future avenues for advancement: regionally constrained types, better recognition of intermittent rivers, and consideration of biotic communities.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Monitoramento Ambiental/métodos , Humanos , Invertebrados
18.
Sci Data ; 7(1): 386, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177529

RESUMO

Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.


Assuntos
Distribuição Animal , Organismos Aquáticos , Invertebrados , Animais , Conservação dos Recursos Naturais , Ecologia , Monitoramento Ambiental , Europa (Continente)
20.
Sci Data ; 7(1): 6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913312

RESUMO

The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.


Assuntos
Biota , Animais , Biodiversidade , Ecologia , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA