Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866046

RESUMO

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Doença de Leigh/etiologia , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Alelos , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/patologia , Linhagem , Fenótipo
2.
Am J Hum Genet ; 107(2): 364-373, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707086

RESUMO

We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.


Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto Jovem
3.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34656997

RESUMO

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismo
4.
Clin Genet ; 101(2): 214-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741306

RESUMO

Congenital heart defects (CHD) are the most commonly occurring birth defect and can occur in isolation or with additional clinical features comprising a genetic syndrome. Autosomal dominant variants in TAB2 are recognized by the American Heart Association as causing nonsyndromic CHD, however, emerging data point to additional, extra-cardiac features associated with TAB2 variants. We identified 15 newly reported individuals with pathogenic TAB2 variants and reviewed an additional 24 subjects with TAB2 variants in the literature. Analysis showed 64% (25/39) of individuals with disease resulting from TAB2 single nucleotide variants (SNV) had syndromic CHD or adult-onset cardiomyopathy with one or more extra-cardiac features. The most commonly co-occurring features with CHD or cardiomyopathy were facial dysmorphism, skeletal and connective tissue defects and most subjects with TAB2 variants present as a connective tissue disorder. Notably, 53% (8/15) of our cohort displayed developmental delay and we suspect this may be a previously unappreciated feature of TAB2 disease. We describe the largest cohort of subjects with TAB2 SNV and show that in addition to heart disease, features across multiple systems are present in most TAB2 cases. In light of our findings, we recommend that TAB2 be included on the list of genes that cause syndromic CHD, adult-onset cardiomyopathy, and connective tissue disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Alelos , Biópsia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Humanos , Lactente , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
Am J Hum Genet ; 103(5): 817-825, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401461

RESUMO

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.


Assuntos
Ataxia Cerebelar/genética , Deficiências do Desenvolvimento/genética , Glicosídeo Hidrolases/genética , Mutação/genética , Doenças Neurodegenerativas/genética , ADP-Ribosilação/genética , Adenosina Difosfato Ribose/genética , Adolescente , Alelos , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Masculino , Malformações do Sistema Nervoso/genética , Processamento de Proteína Pós-Traducional/genética
6.
Am J Hum Genet ; 101(5): 833-843, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100093

RESUMO

Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/Pi carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H2O2). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H2O2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/Pi transport to the development of skeletal and connective tissue.


Assuntos
Anormalidades Múltiplas/genética , Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Anormalidades Craniofaciais/genética , Craniossinostoses/genética , Permeabilidade do Canal Arterial/genética , Hipertricose/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação/genética , Trifosfato de Adenosina/genética , Adolescente , Criança , Pré-Escolar , Cútis Laxa/genética , DNA Mitocondrial/genética , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Fibroblastos/patologia , Transtornos do Crescimento , Humanos , Peróxido de Hidrogênio/farmacologia , Lactente , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/genética , Progéria/genética
7.
Am J Hum Genet ; 100(1): 151-159, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989324

RESUMO

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.


Assuntos
Encefalopatias/genética , Ciclo do Ácido Cítrico , Malato Desidrogenase/genética , Mutação , Idade de Início , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Ciclo do Ácido Cítrico/genética , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fumaratos/metabolismo , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Masculino , Metabolômica , Modelos Moleculares
8.
Hum Mutat ; 40(12): 2414-2429, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448843

RESUMO

PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.


Assuntos
Disceratose Congênita/genética , Exorribonucleases/genética , Retardo do Crescimento Fetal/genética , Deficiência Intelectual/genética , MicroRNAs/genética , Microcefalia/genética , Mutagênese Insercional , Mutação de Sentido Incorreto , Adolescente , Linhagem Celular , Pré-Escolar , Regulação para Baixo , Exorribonucleases/metabolismo , Feminino , Humanos , Masculino , Linhagem , Penetrância , Encurtamento do Telômero
9.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31045291

RESUMO

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Assuntos
Cardiomiopatia Hipertrófica/genética , Genes Mitocondriais , Predisposição Genética para Doença , Mutação , Proteínas de Neoplasias/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Alelos , Substituição de Aminoácidos , Biomarcadores , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Estudos de Coortes , Ativação Enzimática , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Cinética , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenótipo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693233

RESUMO

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Genes Dominantes/genética , Doenças Mitocondriais/genética , Mutação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Idade de Início , Arilamina N-Acetiltransferase/genética , Criança , Pré-Escolar , Transporte de Elétrons/genética , Exoma/genética , Feminino , Humanos , Lactente , Recém-Nascido , Isoenzimas/genética , Masculino , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo
11.
Am J Hum Genet ; 98(2): 347-57, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26805781

RESUMO

The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.


Assuntos
Arritmias Cardíacas/genética , Debilidade Muscular/genética , Rabdomiólise/genética , Alelos , Árabes/genética , Arritmias Cardíacas/diagnóstico , Sequência de Bases , Criança , Pré-Escolar , Estresse do Retículo Endoplasmático/genética , Exoma , Éxons , Feminino , Deleção de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Hispânico ou Latino/genética , Homozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Debilidade Muscular/diagnóstico , Linhagem , Rabdomiólise/diagnóstico , População Branca/genética
12.
Mol Genet Metab ; 128(4): 463-469, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31540697

RESUMO

Panthothenate kinase-associated neurodegeneration (PKAN, OMIM 234200), is an inborn is an autosomal recessive inborn error of metabolism caused by pathogenic variants in PANK2. PANK2 encodes the enzyme pantothenate kinase 2 (EC 2.7.1.33), an essential regulatory enzyme in CoA biosynthesis. Clinical presentation includes dystonia, rigidity, bradykinesia, dysarthria, pigmentary retinopathy and dementia with variable age of onset ranging from childhood to adulthood. In order to provide an accurate incidence estimate of PKAN, we conducted a systematic review of the literature and databases for pathogenic mutations and constructed a bioinformatic profile for pathogenic missense variants in PANK2. We then studied the gnomAD cohort of ~140,000 unrelated adults from global populations to determine the allele frequency of the variants in PANK2 reported pathogenic for PKAN and for those additional variants identified in gnomAD that met bioinformatics criteria for being potentially pathogenic. Incidence was estimated based on three different models using the allele frequencies of pathogenic PKAN variants with or without those bioinformatically determined to be potentially pathogenic. Disease incidence calculations showed PKAN incidence ranging from 1:396,006 in Europeans, 1:1,526,982 in Africans, 1:480,826 in Latino, 1:523,551 in East Asians and 1:531,118 in South Asians. These results indicate PKAN is expected to occur in approximately 2 of every 1 million live births globally outside of Africa, and has a much lower incidence 1 in 1.5 million live births in the African population.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase/epidemiologia , Alelos , Substituição de Aminoácidos , Biologia Computacional/métodos , Bases de Dados Genéticas , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Humanos , Incidência , Neurodegeneração Associada a Pantotenato-Quinase/diagnóstico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Vigilância da População
13.
Hum Mutat ; 39(4): 537-549, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29297947

RESUMO

Iron-sulfur (Fe-S) clusters are essential cofactors for proteins that participate in fundamental cellular processes including metabolism, DNA replication and repair, transcriptional regulation, and the mitochondrial electron transport chain (ETC). ISCA2 plays a role in the biogenesis of Fe-S clusters and a recent report described subjects displaying infantile-onset leukodystrophy due to bi-allelic mutation of ISCA2. We present two additional unrelated cases, and provide a more complete clinical description that includes hyperglycinemia, leukodystrophy of the brainstem with longitudinally extensive spinal cord involvement, and mtDNA deficiency. Additionally, we characterize the role of ISCA2 in mitochondrial bioenergetics and Fe-S cluster assembly using subject cells and ISCA2 cellular knockdown models. Loss of ISCA2 diminished mitochondrial membrane potential, the mitochondrial network, basal and maximal respiration, ATP production, and activity of ETC complexes II and IV. We specifically tested the impact of loss of ISCA2 on 2Fe-2S proteins versus 4Fe-4S proteins and observed deficits in the functioning of 4Fe-4S but not 2Fe-2S proteins. Together these data indicate loss of ISCA2 impaired function of 4Fe-4S proteins resulting in a fatal encephalopathy accompanied by a relatively unusual combination of features including mtDNA depletion alongside complex II deficiency and hyperglycinemia that may facilitate diagnosis of ISCA2 deficiency patients.


Assuntos
Encefalopatias/genética , Encefalopatias/patologia , Tronco Encefálico/patologia , DNA Mitocondrial/genética , Proteínas Ferro-Enxofre/genética , Mutação com Perda de Função , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação
14.
Hum Mutat ; 39(4): 563-578, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314548

RESUMO

In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.


Assuntos
Antígenos HLA/genética , Encefalomiopatias Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/deficiência , Valina-tRNA Ligase/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação de Sentido Incorreto , Fosforilação Oxidativa , Filogenia
15.
Genet Med ; 20(10): 1255-1265, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29419818

RESUMO

PURPOSE: Biallelic mutations in SCYL1 were recently identified as causing a syndromal disorder characterized by peripheral neuropathy, cerebellar atrophy, ataxia, and recurrent episodes of liver failure. The occurrence of SCYL1 deficiency among patients with previously undetermined infantile cholestasis or acute liver failure has not been studied; furthermore, little is known regarding the hepatic phenotype. METHODS: We aimed to identify patients with SCYL1 variants within an exome-sequencing study of individuals with infantile cholestasis or acute liver failure of unknown etiology. Deep clinical and biochemical phenotyping plus analysis of liver biopsies and functional studies on fibroblasts were performed. RESULTS: Seven patients from five families with biallelic SCYL1 variants were identified. The main clinical phenotype was recurrent low γ-glutamyl-transferase (GGT) cholestasis or acute liver failure with onset in infancy and a variable neurological phenotype of later onset (CALFAN syndrome). Liver crises were triggered by febrile infections and were transient, but fibrosis developed. Functional studies emphasize that SCYL1 deficiency is linked to impaired intracellular trafficking. CONCLUSION: SCYL1 deficiency can cause recurrent low-GGT cholestatic liver dysfunction in conjunction with a variable neurological phenotype. Like NBAS deficiency, it is a member of the emerging group of congenital disorders of intracellular trafficking causing hepatopathy.


Assuntos
Colestase/genética , Falência Hepática Aguda/genética , Degeneração Neural/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transporte Vesicular , Alelos , Criança , Pré-Escolar , Colestase/complicações , Colestase/diagnóstico , Colestase/patologia , Proteínas de Ligação a DNA , Exoma/genética , Feminino , Humanos , Lactente , Falência Hepática Aguda/complicações , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/patologia , Masculino , Mutação , Degeneração Neural/complicações , Degeneração Neural/diagnóstico , Degeneração Neural/patologia , gama-Glutamiltransferase/genética
16.
Am J Med Genet A ; 176(5): 1115-1127, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575569

RESUMO

Short-chain enoyl-CoA hydratase (SCEH or ECHS1) deficiency is a rare inborn error of metabolism caused by biallelic mutations in the gene ECHS1 (OMIM 602292). Clinical presentation includes infantile-onset severe developmental delay, regression, seizures, elevated lactate, and brain MRI abnormalities consistent with Leigh syndrome (LS). Characteristic abnormal biochemical findings are secondary to dysfunction of valine metabolism. We describe four patients from two consanguineous families (one Pakistani and one Irish Traveler), who presented in infancy with LS. Urine organic acid analysis by GC/MS showed increased levels of erythro-2,3-dihydroxy-2-methylbutyrate and 3-methylglutaconate (3-MGC). Increased urine excretion of methacrylyl-CoA and acryloyl-CoA related metabolites analyzed by LC-MS/MS, were suggestive of SCEH deficiency; this was confirmed in patient fibroblasts. Both families were shown to harbor homozygous pathogenic variants in the ECHS1 gene; a c.476A > G (p.Gln159Arg) ECHS1variant in the Pakistani family and a c.538A > G, p.(Thr180Ala) ECHS1 variant in the Irish Traveler family. The c.538A > G, p.(Thr180Ala) ECHS1 variant was postulated to represent a Canadian founder mutation, but we present SNP genotyping data to support Irish ancestry of this variant with a haplotype common to the previously reported Canadian patients and our Irish Traveler family. The presence of detectable erythro-2,3-dihydroxy-2-methylbutyrate is a nonspecific marker on urine organic acid analysis but this finding, together with increased excretion of 3-MGC, elevated plasma lactate, and normal acylcarnitine profile in patients with a Leigh-like presentation should prompt consideration of a diagnosis of SCEH deficiency and genetic analysis of ECHS1. ECHS1 deficiency can be added to the list of conditions with 3-MGA.


Assuntos
Biomarcadores , Enoil-CoA Hidratase/deficiência , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Sequência de Aminoácidos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Cromatografia Líquida , Análise Mutacional de DNA , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Linhagem , Espectrometria de Massas em Tandem , Valina/metabolismo
17.
J Inherit Metab Dis ; 40(1): 121-130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696117

RESUMO

Mitochondrial diseases collectively represent one of the most heterogeneous group of metabolic disorders. Symptoms can manifest at any age, presenting with isolated or multiple-organ involvement. Advances in next-generation sequencing strategies have greatly enhanced the diagnosis of patients with mitochondrial disease, particularly where a mitochondrial aetiology is strongly suspected yet OXPHOS activities in biopsied tissue samples appear normal. We used whole exome sequencing (WES) to identify the molecular basis of an early-onset mitochondrial syndrome-pathogenic biallelic variants in the HTRA2 gene, encoding a mitochondria-localised serine protease-in five subjects from two unrelated families characterised by seizures, neutropenia, hypotonia and cardio-respiratory problems. A unifying feature in all affected children was 3-methylglutaconic aciduria (3-MGA-uria), a common biochemical marker observed in some patients with mitochondrial dysfunction. Although functional studies of HTRA2 subjects' fibroblasts and skeletal muscle homogenates showed severely decreased levels of mutant HTRA2 protein, the structural subunits and complexes of the mitochondrial respiratory chain appeared normal. We did detect a profound defect in OPA1 processing in HTRA2-deficient fibroblasts, suggesting a role for HTRA2 in the regulation of mitochondrial dynamics and OPA1 proteolysis. In addition, investigated subject fibroblasts were more susceptible to apoptotic insults. Our data support recent studies that described important functions for HTRA2 in programmed cell death and confirm that patients with genetically-unresolved 3-MGA-uria should be screened by WES with pathogenic variants in the HTRA2 gene prioritised for further analysis.


Assuntos
Variação Genética/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Erros Inatos do Metabolismo/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Morte Celular/genética , Células Cultivadas , Criança , Exoma/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Serina Proteases/genética , Síndrome
18.
Am J Hum Genet ; 93(3): 471-81, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23993193

RESUMO

Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability.


Assuntos
DNA Mitocondrial/genética , Proteínas F-Box/genética , Predisposição Genética para Doença , Encefalomiopatias Mitocondriais/genética , Mutação/genética , Ubiquitina-Proteína Ligases/genética , Acidose Láctica/complicações , Acidose Láctica/genética , Acidose Láctica/patologia , Sequência de Bases , Criança , Pré-Escolar , Segregação de Cromossomos/genética , Transporte de Elétrons/genética , Proteínas F-Box/química , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Dosagem de Genes/genética , Genes Recessivos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Encefalomiopatias Mitocondriais/complicações , Encefalomiopatias Mitocondriais/patologia , Dados de Sequência Molecular , Músculo Esquelético/patologia , Fosforilação Oxidativa , Linhagem , Transporte Proteico , Ubiquitina-Proteína Ligases/química
19.
Brain ; 138(Pt 12): 3503-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510951

RESUMO

Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients' fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Doenças Mitocondriais/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Canadá , Células Cultivadas , Pré-Escolar , Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Proteínas de Repetições Ricas em Leucina , Masculino , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Mutação , Linhagem , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial
20.
Nature ; 467(7311): 52-8, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20811451

RESUMO

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of

Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Polimorfismo de Nucleotídeo Único , Grupos Populacionais/genética , Projeto Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA