Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(40): 22229-36, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25212846

RESUMO

A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.


Assuntos
Técnicas Eletroquímicas , Geobacter/citologia , Ouro/química , Prata/química , Eletrodos , Eletrólitos/química , Transporte de Elétrons , Geobacter/química , Estrutura Molecular , Propriedades de Superfície
2.
Environ Microbiol Rep ; 7(2): 219-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25348891

RESUMO

The ability of Geobacter species to transfer electrons outside the cell enables them to play an important role in a number of biogeochemical and bioenergy processes. Gene deletion studies have implicated periplasmic and outer-surface c-type cytochromes in this extracellular electron transfer. However, even when as many as five c-type cytochrome genes have been deleted, some capacity for extracellular electron transfer remains. In order to evaluate the role of c-type cytochromes in extracellular electron transfer, Geobacter sulfurreducens was grown in a low-iron medium that included the iron chelator (2,2'-bipyridine) to further sequester iron. Haem-staining revealed that the cytochrome content of cells grown in this manner was 15-fold lower than in cells exposed to a standard iron-containing medium. The low cytochrome abundance was confirmed by in situ nanoparticle-enhanced Raman spectroscopy (NERS). The cytochrome-depleted cells reduced fumarate to succinate as well as the cytochrome-replete cells do, but were unable to reduce Fe(III) citrate or to exchange electrons with a graphite electrode. These results demonstrate that c-type cytochromes are essential for extracellular electron transfer by G. sulfurreducens. The strategy for growing cytochrome-depleted G. sulfurreducens will also greatly aid future physiological studies of Geobacter species and other microorganisms capable of extracellular electron transfer.


Assuntos
Citocromos c/metabolismo , Transporte de Elétrons , Geobacter/metabolismo , Meios de Cultura/química , Eletrodos , Compostos Férricos/metabolismo , Fumaratos/metabolismo , Grafite/metabolismo , Oxirredução , Análise Espectral Raman , Coloração e Rotulagem , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA