RESUMO
The Dishevelled, EGL-10 and pleckstrin (DEP) domain is a globular protein domain that is present in about ten human protein families with well-defined structural features. A picture is emerging that DEP domains mainly function in the spatial and temporal control of diverse signal transduction events by recruiting proteins to the plasma membrane. DEP domains can interact with various partners at the membrane, including phospholipids and membrane receptors, and their binding is subject to regulation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfoproteínas/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas Desgrenhadas , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas RGS/química , Proteínas RGS/genéticaRESUMO
The second messenger cAMP is known to augment glucose-induced insulin secretion. However, its downstream targets in pancreatic ß-cells have not been unequivocally determined. Therefore, we designed cAMP analogues by a structure-guided approach that act as Epac2-selective agonists both in vitro and in vivo. These analogues activate Epac2 about two orders of magnitude more potently than cAMP. The high potency arises from increased affinity as well as increased maximal activation. Crystallographic studies demonstrate that this is due to unique interactions. At least one of the Epac2-specific agonists, Sp-8-BnT-cAMPS (S-220), enhances glucose-induced insulin secretion in human pancreatic cells. Selective targeting of Epac2 is thus proven possible and may be an option in diabetes treatment.
Assuntos
AMP Cíclico/análogos & derivados , AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/agonistas , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , AMP Cíclico/farmacologia , Desenho de Fármacos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Ligação ProteicaRESUMO
Rap1 is a small GTPase regulating cell-cell adhesion, cell-matrix adhesion, and actin rearrangements, all processes dynamically coordinated during cell spreading and endothelial barrier function. Here, we identify the adaptor protein ras-interacting protein 1 (Rasip1) as a Rap1-effector involved in cell spreading and endothelial barrier function. Using Förster resonance energy transfer, we show that Rasip1 interacts with active Rap1 in a cellular context. Rasip1 mediates Rap1-induced cell spreading through its interaction partner Rho GTPase-activating protein 29 (ArhGAP29), a GTPase activating protein for Rho proteins. Accordingly, the Rap1-Rasip1 complex induces cell spreading by inhibiting Rho signaling. The Rasip1-ArhGAP29 pathway also functions in Rap1-mediated regulation of endothelial junctions, which controls endothelial barrier function. In this process, Rasip1 cooperates with its close relative ras-association and dilute domain-containing protein (Radil) to inhibit Rho-mediated stress fiber formation and induces junctional tightening. These results reveal an effector pathway for Rap1 in the modulation of Rho signaling and actin dynamics, through which Rap1 modulates endothelial barrier function.
Assuntos
Endotélio Vascular/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Ligação Proteica , Transdução de SinaisRESUMO
Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.
Assuntos
Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácidos Fosfatídicos/química , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Lipídeos/química , Lipossomos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas rap1 de Ligação ao GTP/químicaRESUMO
Previously, exchange protein directly activated by cAMP 2 (Epac2) and PKA were known to play a role in glucose-stimulated insulin secretion (GSIS) by pancreatic ß cells. The present study shows that Epac1 mRNA is also expressed by ß cells. Therefore, we generated mice and embryonic stem (ES) cells with deletion of the Epac1 gene to define its role in ß-cell biology and metabolism. The homozygous Epac1-knockout (Epac1(-/-)) mice developed impaired glucose tolerance and GSIS with deranged islet cytoarchitecture, which was confirmed by isolated islets from adult Epac1(-/-) mice. Moreover, Epac1(-/-) mice developed more severe hyperglycemia with increased ß-cell apoptosis and insulitis after multiple low-dose streptozotocin (MLDS; 40 mg/kg) treatment than Epac1(+/+) mice. Interestingly, Epac1(-/-) mice also showed metabolic defects, including increased respiratory exchange ratio (RER) and plasma triglyceride (TG), and more severe diet-induced obesity with insulin resistance, which may contributed to ß-cell dysfunction. However, islets differentiated from Epac1(-/-) ES cells showed insulin secretion defect, reduced Glut2 and PDX-1 expression, and abolished GLP-1-stimulated PCNA induction, suggesting a role of Epac1 in ß-cell function. The current study provides in vitro and in vivo evidence that Epac1 has an important role in GSIS of ß cells and phenotype resembling metabolic syndrome.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Secretoras de Insulina/metabolismo , Síndrome Metabólica/metabolismo , Animais , Glicemia , Diabetes Mellitus Experimental , Gorduras na Dieta/efeitos adversos , Células-Tronco Embrionárias , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/genéticaRESUMO
Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.
Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , AMP Cíclico/análogos & derivados , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Tionucleotídeos/química , Tionucleotídeos/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/ultraestrutura , Cristalografia por Raios X , AMP Cíclico/química , AMP Cíclico/metabolismo , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/ultraestruturaRESUMO
cAMP is a second messenger that is essential for relaying hormonal responses in many biological processes. The discovery of the cAMP target Epac explained various effects of cAMP that could not be attributed to the established targets PKA and cyclic nucleotide-gated ion channels. Epac1 and Epac2 function as guanine nucleotide exchange factors for the small G protein Rap. cAMP analogs that selectively activate Epac have helped to reveal a role for Epac in processes ranging from insulin secretion to cardiac contraction and vascular permeability. Advances in the understanding of the activation mechanism of Epac and its regulation by diverse anchoring mechanisms have helped to elucidate the means by which cAMP fulfills these functions via Epac.
Assuntos
AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Animais , Cálcio/metabolismo , Permeabilidade Capilar , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Fatores de Troca do Nucleotídeo Guanina/agonistas , Humanos , Inflamação/etiologia , Insulina/metabolismo , Secreção de Insulina , Rim/fisiologia , Neurônios/fisiologia , Receptores Adrenérgicos beta/fisiologiaRESUMO
The Rap family of small GTPases regulate the adhesion of cells to extracellular matrices. Several Rap-binding proteins have been shown to function as effectors that mediate Rap-induced adhesion. However, little is known regarding the relationships between these effectors, or about other proteins that are downstream of or act in parallel to the effectors. To establish whether an array of effectors was required for Rap-induced cell adhesion and spreading, and to find new components involved in Rap-signal transduction, we performed a small-scale siRNA screen in A549 lung epithelial cells. Of the Rap effectors tested, only Radil blocked Rap-induced spreading. Additionally, we identified a novel role for Ezrin downstream of Rap1. Ezrin was necessary for Rap-induced cell spreading, but not Rap-induced cell adhesion or basal adhesion processes. Furthermore, Ezrin depletion inhibited Rap-induced cell spreading in several cell lines, including primary human umbilical vein endothelial cells. Interestingly, Radixin and Moesin, two proteins with high homology to Ezrin, are not required for Rap-induced cell spreading and cannot compensate for loss of Ezrin to rescue Rap-induced cell spreading. Here, we present a novel function for Ezrin in Rap1-induced cell spreading and evidence of a non-redundant role of an ERM family member.
Assuntos
Adesão Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Forma Celular/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas do Citoesqueleto/genética , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Interferência de RNA , Transdução de Sinais , Talina/genética , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/agonistasRESUMO
Patient-derived organoids (PDOs) are widely heralded as a drug-screening platform to develop new anti-cancer therapies. Here, we use a drug-repurposing library to screen PDOs of colorectal cancer (CRC) to identify hidden vulnerabilities within therapy-induced phenotypes. Using a microscopy-based screen that accurately scores drug-induced cell killing, we have tested 414 putative anti-cancer drugs for their ability to switch the EGFRi/MEKi-induced cytostatic phenotype toward cytotoxicity. A majority of validated hits (9/37) are microtubule-targeting agents that are commonly used in clinical oncology, such as taxanes and vinca-alkaloids. One of these drugs, vinorelbine, is consistently effective across a panel of >25 different CRC PDOs, independent of RAS mutational status. Unlike vinorelbine alone, its combination with EGFR/MEK inhibition induces apoptosis at all stages of the cell cycle and shows tolerability and effective anti-tumor activity in vivo, setting the basis for a clinical trial to treat patients with metastatic RAS-mutant CRC.
Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Vinorelbina/farmacologia , Vinorelbina/uso terapêutico , Reposicionamento de Medicamentos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/metabolismoRESUMO
The small GTPase Rap1 is involved in several aspects of cell adhesion, including integrin-mediated cell adhesion and cadherin-mediated cell junction formation. Recently, several effector proteins for Rap1 have been identified providing a clear link between Rap1 and actin dynamics. Furthermore, evidence is accumulating that Rap1 functions in the spatial and temporal control of cell polarity.
Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Transdução de Sinais/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Adesão Celular/fisiologia , Humanos , Modelos Biológicos , Sistemas do Segundo Mensageiro/fisiologia , Proteínas rap1 de Ligação ao GTP/genéticaRESUMO
Epac proteins (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors (GEFs) for the small GTP-binding proteins Rap1 and Rap2 that are directly regulated by the second messenger cyclic AMP and function in the control of diverse cellular processes, including cell adhesion and insulin secretion. Here we report the three-dimensional structure of full-length Epac2, a 110-kDa protein that contains an amino-terminal regulatory region with two cyclic-nucleotide-binding domains and a carboxy-terminal catalytic region. The structure was solved in the absence of cAMP and shows the auto-inhibited state of Epac. The regulatory region is positioned with respect to the catalytic region by a rigid, tripartite beta-sheet-like structure we refer to as the 'switchboard' and an ionic interaction we call the 'ionic latch'. As a consequence of this arrangement, the access of Rap to the catalytic site is sterically blocked. Mutational analysis suggests a model for cAMP-induced Epac activation with rigid body movement of the regulatory region, the features of which are universally conserved in cAMP-regulated proteins.
Assuntos
Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Domínio Catalítico , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Proteínas rap de Ligação ao GTP/metabolismoRESUMO
Renal ischemia-reperfusion injury is associated with the loss of tubular epithelial cell-cell and cell-matrix interactions which contribute to renal failure. The Epac-Rap signaling pathway is a potent regulator of cell-cell and cell-matrix adhesion. The cyclic AMP analogue 8-pCPT-2'-O-Me-cAMP has been shown to selectively activate Epac, whereas the addition of an acetoxymethyl (AM) ester to 8-pCPT-2'-O-Me-cAMP enhanced in vitro cellular uptake. Here we demonstrate that pharmacological activation of Epac-Rap signaling using acetoxymethyl-8-pCPT-2'-O-Me-cAMP preserves cell adhesions during hypoxia in vitro, maintaining the barrier function of the epithelial monolayer. Intrarenal administration in vivo of 8-pCPT-2'-O-Me-cAMP also reduced renal failure in a mouse model for ischemia-reperfusion injury. This was accompanied by decreased expression of the tubular cell stress marker clusterin-α, and lateral expression of ß-catenin after ischemia indicative of sustained tubular barrier function. Our study emphasizes the undervalued importance of maintaining tubular epithelial cell adhesion in renal ischemia and demonstrates the potential of pharmacological modulation of cell adhesion as a new therapeutic strategy to reduce the extent of injury in kidney disease and transplantation.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Isquemia/complicações , Rim/irrigação sanguínea , Insuficiência Renal/etiologia , Transdução de Sinais/fisiologia , Estresse Fisiológico , Proteínas rap1 de Ligação ao GTP/fisiologia , Junções Aderentes/fisiologia , Animais , Adesão Celular , Hipóxia Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Adesões Focais , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell-cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the alpha-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Movimento Celular/fisiologia , Tela Subcutânea , Proteínas de Transporte Vesicular/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Mutação , Fenótipo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genéticaRESUMO
The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes.
Assuntos
Evolução Molecular , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Duplicação Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Genéticos , Complexos Multiproteicos/genética , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR/química , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
cAMP is involved in a wide variety of cellular processes that were thought to be mediated by protein kinase A (PKA). However, cAMP also directly regulates Epac1 and Epac2, guanine nucleotide-exchange factors (GEFs) for the small GTPases Rap1 and Rap2 (refs 2,3). Unfortunately, there is an absence of tools to discriminate between PKA- and Epac-mediated effects. Therefore, through rational drug design we have developed a novel cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP), which activates Epac, but not PKA, both in vitro and in vivo. Using this analogue, we tested the widespread model that Rap1 mediates cAMP-induced regulation of the extracellular signal-regulated kinase (ERK). However, both in cell lines in which cAMP inhibits growth-factor-induced ERK activation and in which cAMP activates ERK, 8CPT-2Me-cAMP did not affect ERK activity. Moreover, in cell lines in which cAMP activates ERK, inhibition of PKA and Ras, but not Rap1, abolished cAMP-mediated ERK activation. We conclude that cAMP-induced regulation of ERK and activation of Rap1 are independent processes.
Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Tempo , TransfecçãoRESUMO
Epac1 and Epac2 are cAMP-dependent guanine-nucleotide-exchange factors for the small GTPases Rap1 and Rap2, and are known to be important mediators of cAMP signaling. The recent determination of the crystal structure of Epac2 has indicated a mechanism for the activation of the multi-domain Epac proteins. In addition, these proteins have been implicated in various cellular processes such as integrin-mediated cell adhesion and cell-cell junction formation, the control of insulin secretion and neurotransmitter release. In most of these processes, cAMP signaling through protein kinase A (PKA) is also involved, stressing the interconnectivity between Epac- and PKA-mediated signaling.
Assuntos
AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Animais , Adesão Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/metabolismo , Humanos , Integrinas/metabolismo , Fator Inibidor de Leucemia/metabolismo , Modelos Biológicos , Modelos Químicos , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de SinaisRESUMO
Direct targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy. We established real-time, quantitative drug response assessment in PDOs with single-cell resolution, using our improved fluorescence resonance energy transfer (FRET)-based ERK biosensor EKAREN5. We show that oncogene-driven signalling is strikingly limited without EGFR activity and insufficient to sustain full proliferative potential. In PDOs and in vivo, upstream EGFR activity rigorously amplifies signal transduction efficiency in KRAS or BRAF mutant MAPK pathways. Our data provide a mechanistic understanding of the effectivity of EGFR inhibitors within combination therapies against KRAS and BRAF mutant CRC.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Organoides/metabolismo , Organoides/patologia , Análise de Célula ÚnicaRESUMO
Rap proteins are Ras-like small GTP-binding proteins that amongst others are involved in the control of cell-cell and cell-matrix adhesion. Several Rap guanine nucleotide exchange factors (RapGEFs) function to activate Rap. These multi-domain proteins, which include C3G, Epacs, PDZ-GEFs, RapGRPs and DOCK4, are regulated by various different stimuli and may function at different levels in junction formation. Downstream of Rap, a number of effector proteins have been implicated in junctional control, most notably the adaptor proteins AF6 and KRIT/CCM1. In this review, we will highlight the latest findings on the Rap signaling network in the control of epithelial and endothelial cell-cell junctions.
Assuntos
Junções Aderentes/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Transdução de Sinais/fisiologia , Junções Íntimas/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Animais , Células Endoteliais/ultraestrutura , Humanos , Estrutura Terciária de ProteínaRESUMO
Epac1 and Rap1 mediate cAMP-induced tightening of endothelial junctions. We have previously found that one of the mechanisms is the inhibition of Rho-mediated tension in radial stress fibers by recruiting the RhoGAP ArhGAP29 in a complex containing the Rap1 effectors Rasip1 and Radil. However, other mechanisms have been proposed as well, most notably the induction of tension in circumferential actin cables by Cdc42 and its GEF FGD5. Here, we have investigated how Rap1 controls FGD5/Cdc42 and how this interconnects with Radil/Rasip1/ArhGAP29. Using endothelial barrier measurements, we show that Rho inhibition is not sufficient to explain the barrier stimulating effect of Rap1. Indeed, Cdc42-mediated tension is induced at cell-cell contacts upon Rap1 activation and this is required for endothelial barrier function. Depletion of potential Rap1 effectors identifies AF6 to mediate Rap1 enhanced tension and concomitant Rho-independent barrier function. When overexpressed in HEK293T cells, AF6 is found in a complex with FGD5 and Radil. From these results we conclude that Rap1 utilizes multiple pathways to control tightening of endothelial junctions, possibly through a multiprotein effector complex, in which AF6 functions to induce tension in circumferential actin cables.
Assuntos
Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cinesinas/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Células Cultivadas , Células HEK293 , HumanosRESUMO
cAMP controls many cellular processes mainly through the activation of protein kinase A (PKA). However, more recently PKA-independent pathways have been established through the exchange protein directly activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPases Rap1 and Rap2. In this report, we show that cAMP can induce integrin-mediated cell adhesion through Epac and Rap1. Indeed, when Ovcar3 cells were treated with cAMP, cells adhered more rapidly to fibronectin. This cAMP effect was insensitive to the PKA inhibitor H-89. A similar increase was observed when the cells were transfected with Epac. Both the cAMP effect and the Epac effect on cell adhesion were abolished by the expression of Rap1-GTPase-activating protein, indicating the involvement of Rap1 in the signaling pathway. Importantly, a recently characterized cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, which specifically activates Epac but not PKA, induced Rap-dependent cell adhesion. Finally, we demonstrate that external stimuli of cAMP signaling, i.e., isoproterenol, which activates the G alpha s-coupled beta 2-adrenergic receptor can induce integrin-mediated cell adhesion through the Epac-Rap1 pathway. From these results we conclude that cAMP mediates receptor-induced integrin-mediated cell adhesion to fibronectin through the Epac-Rap1 signaling pathway.