Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Mol Cell Cardiol ; 180: 33-43, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149124

RESUMO

ß-adrenergic (ß-AR) signaling is essential for the adaptation of the heart to exercise and stress. Chronic stress leads to the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase D (PKD). Unlike CaMKII, the effects of PKD on excitation-contraction coupling (ECC) remain unclear. To elucidate the mechanisms of PKD-dependent ECC regulation, we used hearts from cardiac-specific PKD1 knockout (PKD1 cKO) mice and wild-type (WT) littermates. We measured calcium transients (CaT), Ca2+ sparks, contraction and L-type Ca2+ current in paced cardiomyocytes under acute ß-AR stimulation with isoproterenol (ISO; 100 nM). Sarcoplasmic reticulum (SR) Ca2+ load was assessed by rapid caffeine (10 mM) induced Ca2+ release. Expression and phosphorylation of ECC proteins phospholambam (PLB), troponin I (TnI), ryanodine receptor (RyR), sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) were evaluated by western blotting. At baseline, CaT amplitude and decay tau, Ca2+ spark frequency, SR Ca2+ load, L-type Ca2+ current, contractility, and expression and phosphorylation of ECC protein were all similar in PKD1 cKO vs. WT. However, PKD1 cKO cardiomyocytes presented a diminished ISO response vs. WT with less increase in CaT amplitude, slower [Ca2+]i decline, lower Ca2+ spark rate and lower RyR phosphorylation, but with similar SR Ca2+ load, L-type Ca2+ current, contraction and phosphorylation of PLB and TnI. We infer that the presence of PKD1 allows full cardiomyocyte ß-adrenergic responsiveness by allowing optimal enhancement in SR Ca2+ uptake and RyR sensitivity, but not altering L-type Ca2+ current, TnI phosphorylation or contractile response. Further studies are necessary to elucidate the specific mechanisms by which PKD1 is regulating RyR sensitivity. We conclude that the presence of basal PKD1 activity in cardiac ventricular myocytes contributes to normal ß-adrenergic responses in Ca2+ handling.


Assuntos
Adrenérgicos , Agonistas Adrenérgicos beta , Miócitos Cardíacos , Proteína Quinase C , Animais , Camundongos , Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Quinase C/genética
2.
J Biol Chem ; 298(5): 101865, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339486

RESUMO

The sodium-potassium ATPase (Na/K-ATPase, NKA) establishes ion gradients that facilitate many physiological functions including action potentials and secondary transport processes. NKA comprises a catalytic subunit (alpha) that interacts closely with an essential subunit (beta) and regulatory transmembrane micropeptides called FXYD proteins. In the heart, a key modulatory partner is the FXYD protein phospholemman (PLM, FXYD1), but the stoichiometry of the alpha-beta-PLM regulatory complex is unknown. Here, we used fluorescence lifetime imaging and spectroscopy to investigate the structure, stoichiometry, and affinity of the NKA-regulatory complex. We observed a concentration-dependent binding of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit as well as lower affinity alpha-alpha and alpha-PLM interactions. These data provide the first evidence that, in intact live cells, the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits. Docking and molecular dynamics (MD) simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with the stoichiometry (alpha-beta-PLM)2.


Assuntos
Microscopia , ATPase Trocadora de Sódio-Potássio , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Circ Res ; 128(2): 246-261, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33183171

RESUMO

RATIONALE: ß1ARs (ß1-adrenoceptors) exist at intracellular membranes and OCT3 (organic cation transporter 3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular ß1AR in cardiac contractility remains to be elucidated. OBJECTIVE: Test localization and function of intracellular ß1AR on cardiac contractility. METHODS AND RESULTS: Membrane fractionation, super-resolution imaging, proximity ligation, coimmunoprecipitation, and single-molecule pull-down demonstrated a pool of ß1ARs in mouse hearts that were associated with sarco/endoplasmic reticulum Ca2+-ATPase at the sarcoplasmic reticulum (SR). Local PKA (protein kinase A) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared with wild-type, myocytes lacking OCT3 (OCT3-KO [OCT3 knockout]) responded identically to the membrane-permeant ßAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3-KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3-KO selectively suppressed calcium transients and contraction responses to norepinephrine but not isoproterenol. Furthermore, sotalol, a membrane-impermeant ßAR-blocker, suppressed isoproterenol-induced PKA activation at the PM but permitted PKA activation at the SR, phospholamban phosphorylation, and contractility. Moreover, pretreatment with sotalol in OCT3-KO myocytes prevented norepinephrine-induced PKA activation at both PM and the SR and contractility. CONCLUSIONS: Functional ß1ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular ß1ARs requires catecholamine transport via OCT3.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Frequência Cardíaca , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/genética , Fosforilação , Coelhos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
5.
J Physiol ; 600(22): 4865-4879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36227145

RESUMO

Cardiac mechanical afterload induces an intrinsic autoregulatory increase in myocyte Ca2+ dynamics and contractility to enhance contraction (known as the Anrep effect or slow force response). Our prior work has implicated both nitric oxide (NO) produced by NO synthase 1 (NOS1) and calcium/calmodulin-dependent protein kinase II (CaMKII) activity as required mediators of this form of mechano-chemo-transduction. To test whether a single S-nitrosylation site on CaMKIIδ (Cys290) mediates enhanced sarcoplasmic reticulum Ca2+ leak and afterload-induced increases in sarcoplasmic reticulum (SR) Ca2+ uptake and release, we created a novel CRISPR-based CaMKIIδ knock-in (KI) mouse with a Cys to Ala mutation at C290. These CaMKIIδ-C290A-KI mice exhibited normal cardiac morphometry and function, as well as basal myocyte Ca2+ transients (CaTs) and ß-adrenergic responses. However, the NO donor S-nitrosoglutathione caused an acute increased Ca2+ spark frequency in wild-type (WT) myocytes that was absent in the CaMKIIδ-C290A-KI myocytes. Using our cell-in-gel system to exert multiaxial three-dimensional mechanical afterload on myocytes during contraction, we found that WT myocytes exhibited an afterload-induced increase in Ca2+ sparks and Ca2+ transient amplitude and rate of decline. These afterload-induced effects were prevented in both cardiac-specific CaMKIIδ knockout and point mutant CaMKIIδ-C290A-KI myocytes. We conclude that CaMKIIδ activation by S-nitrosylation at the C290 site is essential in mediating the intrinsic afterload-induced enhancement of myocyte SR Ca2+ uptake, release and Ca2+ transient amplitude (the Anrep effect). The data also indicate that NOS1 activation is upstream of S-nitrosylation at C290 of CaMKII, and that this molecular mechano-chemo-transduction pathway is beneficial in allowing the heart to increase contractility to limit the reduction in stroke volume when aortic pressure (afterload) is elevated. KEY POINTS: A novel CRISPR-based CaMKIIδ knock-in mouse was created in which kinase activation by S-nitrosylation at Cys290 (C290A) is prevented. How afterload affects Ca2+ signalling was measured in cardiac myocytes that were embedded in a hydrogel that imposes a three-dimensional afterload. This mechanical afterload induced an increase in Ca2+ transient amplitude and decay in wild-type myocytes, but not in cardiac-specific CaMKIIδ knockout or C290A knock-in myocytes. The CaMKIIδ-C290 S-nitrosylation site is essential for the afterload-induced enhancement of Ca2+ transient amplitude and Ca2+ sparks.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Retículo Sarcoplasmático , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia
6.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134364

RESUMO

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatias Diabéticas/etiologia , Glucose/toxicidade , Hiperglicemia/complicações , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilação , Humanos , Hiperglicemia/enzimologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/enzimologia , NADPH Oxidase 2/deficiência , NADPH Oxidase 2/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia
7.
Circ Res ; 127(9): 1159-1178, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32821022

RESUMO

RATIONALE: CaMKII (Ca2+-Calmodulin dependent protein kinase) δC activation is implicated in pathological progression of heart failure (HF) and CaMKIIδC transgenic mice rapidly develop HF and arrhythmias. However, little is known about early spatio-temporal Ca2+ handling and CaMKII activation in hypertrophy and HF. OBJECTIVE: To measure time- and location-dependent activation of CaMKIIδC signaling in adult ventricular cardiomyocytes, during transaortic constriction (TAC) and in CaMKIIδC transgenic mice. METHODS AND RESULTS: We used human tissue from nonfailing and HF hearts, 4 mouse lines: wild-type, KO (CaMKIIδ-knockout), CaMKIIδC transgenic in wild-type (TG), or KO background, and wild-type mice exposed to TAC. Confocal imaging and biochemistry revealed disproportional CaMKIIδC activation and accumulation in nuclear and perinuclear versus cytosolic regions at 5 days post-TAC. This CaMKIIδ activation caused a compensatory increase in sarcoplasmic reticulum Ca2+ content, Ca2+ transient amplitude, and [Ca2+] decline rates, with reduced phospholamban expression, all of which were most prominent near and in the nucleus. These early adaptive effects in TAC were entirely mimicked in young CaMKIIδ TG mice (6-8 weeks) where no overt cardiac dysfunction was present. The (peri)nuclear CaMKII accumulation also correlated with enhanced HDAC4 (histone deacetylase) nuclear export, creating a microdomain for transcriptional regulation. At longer times both TAC and TG mice progressed to overt HF (at 45 days and 11-13 weeks, respectively), during which time the compensatory Ca2+ transient effects reversed, but further increases in nuclear and time-averaged [Ca2+] and CaMKII activation occurred. CaMKIIδ TG mice lacking δB exhibited more severe HF, eccentric myocyte growth, and nuclear changes. Patient HF samples also showed greatly increased CaMKIIδ expression, especially for CaMKIIδC in nuclear fractions. CONCLUSIONS: We conclude that in early TAC perinuclear CaMKIIδC activation promotes adaptive increases in myocyte Ca2+ transients and nuclear transcriptional responses but that chronic progression of this nuclear Ca2+-CaMKIIδC axis contributes to eccentric hypertrophy and HF.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Aorta , Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Estimulação Cardíaca Artificial , Cardiomegalia/patologia , Núcleo Celular/metabolismo , Constrição , Citosol/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Histona Desacetilases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Ativação Transcricional
8.
Basic Res Cardiol ; 116(1): 58, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34648073

RESUMO

Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Gravidez , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina
9.
Basic Res Cardiol ; 116(1): 11, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33590335

RESUMO

Nuclear histone deacetylase 4 (HDAC4) represses MEF2-mediated transcription, implicated in the development of heart failure. CaMKII-dependent phosphorylation drives nucleus-to-cytoplasm HDAC4 shuttling, but protein kinase A (PKA) is also linked to HDAC4 translocation. However, the interplay of CaMKII and PKA in regulating adult cardiomyocyte HDAC4 translocation is unclear. Here we sought to determine the interplay of PKA- and CaMKII-dependent HDAC4 phosphorylation and translocation in adult mouse, rabbit and human ventricular myocytes. Confocal imaging and protein analyses revealed that inhibition of CaMKII-but not PKA, PKC or PKD-raised nucleo-to-cytoplasmic HDAC4 fluorescence ratio (FNuc/FCyto) by ~ 50%, indicating baseline CaMKII activity that limits HDAC4 nuclear localization. Further CaMKII activation (via increased extracellular [Ca2+], high pacing frequencies, angiotensin II or overexpression of CaM or CaMKIIδC) led to significant HDAC4 nuclear export. In contrast, PKA activation by isoproterenol or forskolin drove HDAC4 into the nucleus (raising FNuc/FCyto by > 60%). These PKA-mediated effects were abolished in cells pretreated with PKA inhibitors and in cells expressing mutant HDAC4 in S265/266A mutant. In physiological conditions where both kinases are active, PKA-dependent nuclear accumulation of HDAC4 was predominant in the very early response, while CaMKII-dependent HDAC4 export prevailed upon prolonged stimuli. This orchestrated co-regulation was shifted in failing cardiomyocytes, where CaMKII-dependent effects predominated over PKA-dependent response. Importantly, human cardiomyocytes showed similar CaMKII- and PKA-dependent HDAC4 shifts. Collectively, CaMKII limits nuclear localization of HDAC4, while PKA favors HDAC4 nuclear retention and S265/266 is essential for PKA-mediated regulation. These pathways thus compete in HDAC4 nuclear localization and transcriptional regulation in cardiac signaling.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/enzimologia , Histona Desacetilases/metabolismo , Miócitos Cardíacos/enzimologia , Transporte Ativo do Núcleo Celular , Agonistas Adrenérgicos beta/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Histona Desacetilases/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Coelhos , Proteínas Repressoras , Transdução de Sinais , Remodelação Ventricular
10.
Proc Natl Acad Sci U S A ; 115(13): E3036-E3044, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531045

RESUMO

Heart failure (HF) following myocardial infarction (MI) is associated with high incidence of cardiac arrhythmias. Development of therapeutic strategy requires detailed understanding of electrophysiological remodeling. However, changes of ionic currents in ischemic HF remain incompletely understood, especially in translational large-animal models. Here, we systematically measure the major ionic currents in ventricular myocytes from the infarct border and remote zones in a porcine model of post-MI HF. We recorded eight ionic currents during the cell's action potential (AP) under physiologically relevant conditions using selfAP-clamp sequential dissection. Compared with healthy controls, HF-remote zone myocytes exhibited increased late Na+ current, Ca2+-activated K+ current, Ca2+-activated Cl- current, decreased rapid delayed rectifier K+ current, and altered Na+/Ca2+ exchange current profile. In HF-border zone myocytes, the above changes also occurred but with additional decrease of L-type Ca2+ current, decrease of inward rectifier K+ current, and Ca2+ release-dependent delayed after-depolarizations. Our data reveal that the changes in any individual current are relatively small, but the integrated impacts shift the balance between the inward and outward currents to shorten AP in the border zone but prolong AP in the remote zone. This differential remodeling in post-MI HF increases the inhomogeneity of AP repolarization, which may enhance the arrhythmogenic substrate. Our comprehensive findings provide a mechanistic framework for understanding why single-channel blockers may fail to suppress arrhythmias, and highlight the need to consider the rich tableau and integration of many ionic currents in designing therapeutic strategies for treating arrhythmias in HF.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Fenômenos Eletrofisiológicos , Insuficiência Cardíaca/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Animais , Células Cultivadas , Miócitos Cardíacos/citologia , Suínos
11.
Basic Res Cardiol ; 115(6): 71, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237428

RESUMO

Chronic hyperglycemia and diabetes lead to impaired cardiac repolarization, K+ channel remodeling and increased arrhythmia risk. However, the exact signaling mechanism by which diabetic hyperglycemia regulates cardiac K+ channels remains elusive. Here, we show that acute hyperglycemia increases inward rectifier K+ current (IK1), but reduces the amplitude and inactivation recovery time of the transient outward K+ current (Ito) in mouse, rat, and rabbit myocytes. These changes were all critically dependent on intracellular O-GlcNAcylation. Additionally, IK1 amplitude and Ito recovery effects (but not Ito amplitude) were prevented by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor autocamtide-2-related inhibitory peptide, CaMKIIδ-knockout, and O-GlcNAc-resistant CaMKIIδ-S280A knock-in. Ito reduction was prevented by inhibition of protein kinase C (PKC) and NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). In mouse models of chronic diabetes (streptozotocin, db/db, and high-fat diet), heart failure, and CaMKIIδ overexpression, both Ito and IK1 were reduced in line with the downregulated K+ channel expression. However, IK1 downregulation in diabetes was markedly attenuated in CaMKIIδ-S280A. We conclude that acute hyperglycemia enhances IK1 and Ito recovery via CaMKIIδ-S280 O-GlcNAcylation, but reduces Ito amplitude via a NOX2-ROS-PKC pathway. Moreover, chronic hyperglycemia during diabetes and CaMKII activation downregulate K+ channel expression and function, which may further increase arrhythmia susceptibility.


Assuntos
Arritmias Cardíacas/enzimologia , Glicemia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Miócitos Cardíacos/enzimologia , NADPH Oxidase 2/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Arritmias Cardíacas/sangue , Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coelhos , Transdução de Sinais
12.
J Mol Cell Cardiol ; 127: 246-259, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30633874

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Transdução de Sinais , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Humanos , Canais Iônicos/metabolismo , Mitocôndrias Cardíacas/metabolismo
13.
J Mol Cell Cardiol ; 125: 18-28, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321537

RESUMO

Calcium-calmodulin dependent protein kinase IIδ (CaMKIIδ) is an important regulator of cardiac electrophysiology, calcium (Ca) balance, contraction, transcription, arrhythmias and progression to heart failure. CaMKII is readily activated at mouths of dyadic cleft Ca channels, but because of its low Ca-calmodulin affinity and presumed immobility it is less clear how CaMKII gets activated near other known, extra-dyad targets. CaMKII is typically considered to be anchored in cardiomyocytes, but while untested, mobility of active CaMKII could provide a mechanism for broader target phosphorylation in cardiomyocytes. We therefore tested CaMKII mobility and how this is affected by kinase activation in adult rabbit cardiomyocytes. We measured translocation of both endogenous and fluorescence-tagged CaMKII using immunocytochemistry, fluorescence recovery after photobleach (FRAP) and photoactivation of fluorescence. In contrast to the prevailing view that CaMKII is anchored near its myocyte targets, we found CaMKII to be highly mobile in resting myocytes, which was slowed by Ca chelation and accelerated by pacing. At low [Ca], CaMKII was concentrated at Z-lines near the dyad but spread throughout the sarcomere upon pacing. Nuclear exchange of CaMKII was also enhanced upon pacing- and heart failure-induced chronic activation. This mobilization of active CaMKII and its intrinsic memory may allow CaMKII to be activated in high [Ca] regions and then move towards more distant myocyte target sites.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Imuno-Histoquímica , Fosforilação , Coelhos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia
15.
Circ Res ; 119(8): 931-43, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576469

RESUMO

RATIONALE: In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE: This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS: We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced ß2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of ß2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS: In hypertrophic rabbit myocytes, selectively enhanced ß2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine ß2 adrenergic receptor signaling and restore myocyte contractility in response to ß adrenergic stimulation.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Miofibrilas/enzimologia , Miofibrilas/genética , Animais , Células Cultivadas , Miócitos Cardíacos/enzimologia , Fosforilação/fisiologia , Coelhos
16.
Circ Res ; 118(2): e19-28, 2016 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-26643875

RESUMO

RATIONALE: Cardiac myocyte contraction is caused by Ca(2+) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca(2+) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca(2+) release, such as Ca(2+) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca(2+)-contraction coupling in live cardiac myocytes. OBJECTIVE: To develop a method for imaging sarcomere level Ca(2+)-contraction coupling in healthy and disease model cardiac myocytes. METHODS AND RESULTS: Freshly isolated cardiac myocytes were loaded with the Ca(2+)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca(2+) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca(2+) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca(2+) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca(2+) waves and correlated local contraction in pressure-overload-induced cardiomyopathy. CONCLUSIONS: Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca(2+) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca(2+) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca(2+)-contraction coupling and mechanochemotransduction in both health and disease.


Assuntos
Cardiomiopatias/metabolismo , Acoplamento Excitação-Contração , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Multimodal/métodos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Compostos de Anilina , Animais , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Corantes Fluorescentes , Cinética , Masculino , Mecanotransdução Celular , Camundongos , Ratos Sprague-Dawley , Estresse Mecânico , Xantenos
18.
Proc Natl Acad Sci U S A ; 112(13): 3991-6, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25829540

RESUMO

Exchange proteins directly activated by cAMP (Epac1 and Epac2) have been recently recognized as key players in ß-adrenergic-dependent cardiac arrhythmias. Whereas Epac1 overexpression can lead to cardiac hypertrophy and Epac2 activation can be arrhythmogenic, it is unknown whether distinct subcellular distribution of Epac1 vs. Epac2 contributes to differential functional effects. Here, we characterized and used a novel fluorescent cAMP derivate Epac ligand 8-[Pharos-575]-2'-O-methyladenosine-3',5'-cyclic monophosphate (Φ-O-Me-cAMP) in mice lacking either one or both isoforms (Epac1-KO, Epac2-KO, or double knockout, DKO) to assess isoform localization and function. Fluorescence of Φ-O-Me-cAMP was enhanced by binding to Epac. Unlike several Epac-specific antibodies tested, Φ-O-Me-cAMP exhibited dramatically reduced signals in DKO myocytes. In WT, the apparent binding affinity (Kd = 10.2 ± 0.8 µM) is comparable to that of cAMP and nonfluorescent Epac-selective agonist 8-(4-chlorophenylthio)-2-O-methyladenosine-3'-,5'-cyclicmonophosphate (OMe-CPT). Φ-O-Me-cAMP readily entered intact myocytes, but did not activate PKA and its binding was competitively inhibited by OMe-CPT, confirming its Epac specificity. Φ-O-Me-cAMP is a weak partial agonist for purified Epac, but functioned as an antagonist for four Epac signaling pathways in myocytes. Epac2 and Epac1 were differentially concentrated along T tubules and around the nucleus, respectively. Epac1-KO abolished OMe-CPT-induced nuclear CaMKII activation and export of transcriptional regulator histone deacetylase 5. In conclusion, Epac1 is localized and functionally involved in nuclear signaling, whereas Epac2 is located at the T tubules and regulates arrhythmogenic sarcoplasmic reticulum Ca leak.


Assuntos
Corantes Fluorescentes/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ligantes , Animais , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Núcleo Celular/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/química , AMP Cíclico/metabolismo , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Transcrição Gênica
19.
Biochemistry ; 55(44): 6196-6204, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27718550

RESUMO

To determine if mutations introduced into phospholemman (PLM) could increase the level of PLM-Na,K-ATPase (NKA) binding, we performed scanning mutagenesis of the transmembrane domain of PLM and measured Förster resonance energy transfer (FRET) between each mutant and NKA. We observed an increased level of binding to NKA for several PLM mutants compared to that of the wild type (WT), including L27A, L30A, and I32A. In isolated cardiomyocytes, overexpression of WT PLM increased the amplitude of the Ca2+ transient compared to the GFP control. The Ca2+ transient amplitude was further increased by L30A PLM overexpression. The L30A mutation also delayed Ca2+ extrusion and increased the duration of cardiomyocyte contraction. This mimics aspects of the effect of cardiac glycosides, which are known to increase contractility through inhibition of NKA. No significant differences between WT and L30A PLM-expressing myocytes were observed after treatment with isoproterenol, suggesting that the superinhibitory effects of L30A are reversible with ß-adrenergic stimulation. We also observed a decrease in the extent of PLM tetramerization with L30A compared to WT using FRET, suggesting that L30 is an important residue for mediating PLM-PLM binding. Molecular dynamics simulations revealed that the potential energy of the L30A tetramer is greater than that of the WT, and that the transmembrane α helix is distorted by the mutation. The results identify PLM residue L30 as an important determinant of PLM tetramerization and of functional inhibition of NKA by PLM.


Assuntos
Glicosídeos Cardíacos/farmacologia , Proteínas de Membrana/genética , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Fosfoproteínas/genética , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Coelhos
20.
J Biol Chem ; 290(42): 25646-56, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26316536

RESUMO

NO is known to modulate calcium handling and cellular signaling in the myocardium, but key targets for NO in the heart remain unidentified. Recent reports have implied that NO can activate calcium/calmodulin (Ca(2+)/CaM)-dependent protein kinase II (CaMKII) in neurons and the heart. Here we use our novel sensor of CaMKII activation, Camui, to monitor changes in the conformation and activation of cardiac CaMKII (CaMKIIδ) activity after treatment with the NO donor S-nitrosoglutathione (GSNO). We demonstrate that exposure to NO after Ca(2+)/CaM binding to CaMKIIδ results in autonomous kinase activation, which is abolished by mutation of the Cys-290 site. However, exposure of CaMKIIδ to GSNO prior to Ca(2+)/CaM exposure strongly suppresses kinase activation and conformational change by Ca(2+)/CaM. This NO-induced inhibition was ablated by mutation of the Cys-273 site. We found parallel effects of GSNO on CaM/CaMKIIδ binding and CaMKIIδ-dependent ryanodine receptor activation in adult cardiac myocytes. We conclude that NO can play a dual role in regulating cardiac CaMKIIδ activity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Óxido Nítrico/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Ativação Enzimática , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miocárdio/enzimologia , S-Nitrosoglutationa/farmacologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA