Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834195

RESUMO

L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.


Assuntos
Catecol O-Metiltransferase , Levodopa , Ratos , Animais , Levodopa/farmacologia , Levodopa/metabolismo , Tolcapona/farmacologia , Animais Recém-Nascidos , Nialamida , Locomoção
2.
J Physiol ; 599(19): 4477-4496, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34412148

RESUMO

KEY POINTS: Stimulation of hindlimb afferent fibres can both stabilize and increase the activity of fore- and hindlimb motoneurons during fictive locomotion. The increase in motoneuron activity is at least partially due to the production of doublets of action potentials in a subpopulation of motoneurons. These results were obtained using an in vitro brainstem/spinal cord preparation of neonatal rat. ABSTRACT: Quadrupedal locomotion relies on a dynamic coordination between central pattern generators (CPGs) located in the cervical and lumbar spinal cord, and controlling the fore- and hindlimbs, respectively. It is assumed that this CPG interaction is achieved through separate closed-loop processes involving propriospinal and sensory pathways. However, the functional consequences of a concomitant involvement of these different influences on the degree of coordination between the fore- and hindlimb CPGs is still largely unknown. Using an in vitro brainstem/spinal cord preparation of neonatal rat, we found that rhythmic, bilaterally alternating stimulation of hindlimb sensory input pathways elicited coordinated hindlimb and forelimb CPG activity. During pharmacologically induced fictive locomotion, lumbar dorsal root (DR) stimulation entrained and stabilized an ongoing cervico-lumbar locomotor-like rhythm and increased the amplitude of both lumbar and cervical ventral root bursting. The increase in cervical burst amplitudes was correlated with the occurrence of doublet action potential firing in a subpopulation of motoneurons, enabling the latter to transition between low and high frequency discharge according to the intensity of DR stimulation. Moreover, our data revealed that propriospinal and sensory pathways act synergistically to strengthen cervico-lumbar interactions. Indeed, split-bath experiments showed that fully coordinated cervico-lumbar fictive locomotion was induced by combining pharmacological stimulation of either the lumbar or cervical CPGs with lumbar DR stimulation. This study thus highlights the powerful interactions between sensory and propriospinal pathways which serve to ensure the coupling of the fore- and hindlimb CPGs for effective quadrupedal locomotion.


Assuntos
Locomoção , Neurônios Motores , Animais , Animais Recém-Nascidos , Membro Posterior , Ratos , Medula Espinal
3.
J Physiol ; 599(19): 4455-4476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411301

RESUMO

KEY POINTS: In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT: The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.


Assuntos
5-Hidroxitriptofano , Levodopa , 5-Hidroxitriptofano/farmacologia , Animais , Animais Recém-Nascidos , Dopamina , Levodopa/farmacologia , Ratos , Serotonina
4.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906250

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson's disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood-brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These "false neurotransmitters," also known for some of them as inducing an "amphetamine-like" mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to "false neurotransmission."


Assuntos
Corpo Estriado , Dopamina/metabolismo , Levodopa/uso terapêutico , Neurotransmissores/metabolismo , Doença de Parkinson , Neurônios Serotoninérgicos , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia
5.
Discov Nano ; 19(1): 16, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261116

RESUMO

BACKGROUND: The utilization of titanium dioxide nanoparticles (TIO2NPs) has experienced a significant surge in recent decades, and these particles are now commonly found in various everyday consumer products. Due to their small size, TIO2NPs can penetrate biological barriers and elicit adverse interactions with biological tissues. Notably, exposure of pregnant females to TIO2NPs during the perinatal period has been shown to disrupt the growth of offspring. Furthermore, this exposure induces epigenetic modifications in the DNA of newborns, suggesting the possibility of multigenerational effects. Thus, perinatal exposure to TIO2NPs may induce immediate metabolic impairments in neonates, which could be transmitted to subsequent generations in the long term. RESULTS: In this study, we utilized perinatal exposure of female mice to TIO2NPs through voluntary food intake and observed impaired metabolism in newborn male and female F1 offspring. The exposed newborn mice exhibited reduced body weight gain and a slower breathing rate compared to non-exposed animals. Additionally, a higher proportion of exposed F1 newborns experienced apneas. Similar observations were made when the exposure was limited to the postnatal period, highlighting lactation as a critical period for the adverse effects of TIO2NPs on postnatal metabolism. Importantly, the breathing deficits induced by TIO2NPs were transmitted from F1 females to the subsequent F2 generation. Moreover, re-exposure of adult F1 females to TIO2NPs exacerbated the breathing deficits in newborn F2 males. CONCLUSIONS: Our findings demonstrate that perinatal exposure to TIO2NPs disrupts postnatal body weight gain and respiration in the offspring, and these deficits are transmissible to future generations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA