Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Res Natl Inst Stand Technol ; 114(1): 1-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-27504209

RESUMO

The synthesis of the cyclodextrin derivatives reported herein was assisted by extensive literature research together with structure-property relationships derived from three-dimensional molecular modeling. These studies led to the hypothesis that many of the 21 hydroxyl groups on beta-cyclodextrin molecules could be derivatized to form a closely related family of analogous chemical compounds containing both polymerizable groups and hydrophilic ionizable ligand (substrate-binding) groups, each attached via hydrolytically-stable ether-linkages. The vinylbenzylether polymerizable groups should readily homopolymerize and also copolymerize with methacrylates. This could be highly useful for dental applications because substantially all contemporary dental resins and composites are based on methacrylate monomers. Due to hydrophilic ligands and residual hydroxyl groups, these cyclodextrin derivatives should penetrate hydrated layers of dentin and enamel to interact with collagen and tooth mineral. Analyses indicated that the diverse reaction products resulting from the method of synthesis reported herein should comprise a family of copolymerizable molecules that collectively contain about 30 different combinations of vinylbenzyl and hexanoate groups on the various molecules, with up to approximately seven of such groups combined on some of the molecules. Although the hypothesis was supported, and adhesive bonding to dentin is expected to be significantly improved by the use of these polymerizable cyclodextrin derivatives, other efforts are planned for improved synthetic methods to ensure that each of the reaction-product molecules will contain at least one copolymerizable moiety. The long-term objective is to enable stronger and more durable attachments of densely cross-linked polymers to hydrated hydrophilic substrates. Capabilities for bonding of hydrolytically stable polymers to dental and perhaps other hydrous biological tissues could provide widespread benefits.

2.
J Res Natl Inst Stand Technol ; 114(1): 11-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-27504210

RESUMO

The objective of this work was to determine bonding characteristics of a hydrophilic monomer formulation containing polymerizable cyclodextrin derivatives. The hypothesis was that a formulation containing hydrophilic cross-linking diluent comonomers and cyclodextrins with functional groups attached by hydrolytically stable ether linkages could form strong adhesive bonds to dentin. The previously synthesized polymerizable cyclodextrin derivatives were formulated with sorbitol dimethacrylate, methacrylic acid and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The same formulation without the polymerizable cyclodextrin derivatives isolated the effects of the polymerizable cyclodextrin derivatives. A commercial self-etching bonding system was tested as a comparative control. Ground mid-coronal dentin was etched with 37 % phosphoric acid (H3PO4) for 15 s and rinsed with distilled water for 10 s. Formulations were applied to the moist dentin and light-cured 10 s. A packable composite was then applied through irises and light-cured 60 s. Teeth were stored in water for 24 h before bonds were tested in a shearing orientation. One-way ANOVA was performed on the data. The average values of shear bond strengths were defined as loads at fracture divided by the 4 mm diameter iris areas. The average value of shear bond strength for the formulation containing the polymerizable cyclodextrin derivatives was higher (p < 0.05), where p is a fraction of the probability distribution) than that of the same monomeric formulation except that the polymerizable cyclodextrin derivatives were not included. This was supporting evidence that the polymerizable cyclodextrin derivatives contributed to improved bonding. The average value of shear bond strength for the formulation containing the polymerizable cyclodextrin derivatives was also higher (p < 0.05) than that of the commercial self-etching bonding system. These preliminary results are in accordance with the hypothesis that formulations containing polymerizable cyclodextrin derivatives can form strong adhesive bonds to hydrated dentin surfaces. Further improvements in bonding to hydrated biological tissues by use of advanced formulations are anticipated.

3.
Biomaterials ; 26(18): 3973-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15626444

RESUMO

Previous studies have shown that methacrylated beta-cyclodextrins (MCDs) can be used as comonomers in resin-based dental composites. These MCDs by virtue of having several polymerizable methacrylate groups and hydrophilic hydroxyl groups, may also promote bonding of dental composites to dentin. This study evaluated MCDs as adhesive comonomers, and optimized comonomer and polymerization initiator concentrations for maximum shear bond strength (SBS). Experimental MCD-based bonding formulations in acetone were prepared by mixing 33 mass fraction % MCDs with (10, 20, 30, 40, or 50) mass fraction % of 2-hydroxyethyl methacrylate (HEMA). The MCD/HEMA-based solutions were activated with varied amounts of camphorquinone (CQ) and ethyl 4-dimethylamino benzoate (4E). Samples for SBS were prepared by bonding a composite resin to acid-etched dentin surfaces of extracted human molars with the experimental bonding solutions. The specimens were immersed in 37 degrees C water for 24 h and bond strengths were determined in shear mode. With increasing HEMA concentration, the SBS values of MCD-bonding solutions increased to 16 MPa at a composition of 33% MCD, 30% HEMA, and 37% acetone by mass. Also, SBS values of MCD-bonding solutions varied as a function of the CQ and 4E concentrations and passed through a maximum SBS at 21 MPa, which was comparable to that of a commercial control. This preliminary study indicated that nonacidic MCD monomers could be used as an adhesion-promoting comonomer. Additional modification of MCDs having both polymerizable groups and anionic ligand groups, e.g., polymerizable acidic cyclodextrin derivatives should increase the SBS even further.


Assuntos
Ciclodextrinas/análise , Ciclodextrinas/química , Dentina/fisiologia , Metacrilatos/análise , Metacrilatos/química , Dente Molar/fisiologia , Cimentos de Resina/análise , Cimentos de Resina/química , Adesividade , Cimentos Dentários/análise , Cimentos Dentários/química , Dentina/ultraestrutura , Humanos , Teste de Materiais , Resistência ao Cisalhamento , Estresse Mecânico
4.
Dent Mater ; 21(3): 210-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15705427

RESUMO

OBJECTIVES: Methacrylated beta-cyclodextrins (MCDs) are novel candidate dental monomers if all or some of the hydroxyl groups of beta-cyclodextrin are substituted with methacrylate groups. The main objective of this study was to evaluate mechanical properties of a number of composite formulations having MCDs as novel dental comonomers. The properties determined were flexural strength (FS), volumetric shrinkage (VS), and degree of conversion (DC). METHODS: A mass fraction of 50% of MCD monomers was mixed with a mass fraction of 50% each of a series of dimethacrylate or monomethacrylate diluent comonomers to produce consistent formulations of a workable viscosity. For comparison a resin mixture of a mass fraction of 50% Bis-GMA and a mass fraction of 50% triethyleneglycol dimethacrylate (a typical dental resin mixture) was also studied. The mixtures were activated with camphorquinone and ethyl 4-dimethylamino benzoate. One part by mass of each activated resin formulation was mixed with three parts by mass of glass filler. Samples for the FS tests were prepared in (2 x 2 x 25) mm3 molds by light-curing the composites for 2 min on each side. The cured samples were immersed in 37 degrees C water for 24 h, and FS was measured with an Instron machine at a crosshead speed of 0.5 mm/min. VS was measured by a computer-controlled mercury dilatometer. DC was measured by near-infrared spectroscopy. RESULTS: The properties of the MCD-based composites depended on the kind of diluent used. With these MCD monomers, diluents of triethyleneglycol dimethacrylate, 1,10-decamethylenediol dimethacrylate, or benzyl methacrylate yielded the best composite properties. SIGNIFICANCE: Although not yet fully optimized, MCD-based composite formulations containing triethyleneglycol dimethacrylate, 1,10-decamethylenediol dimethacrylate, or benzyl methacrylate yielded flexural strength and volumetric shrinkage values were comparable to those of the Bis-GMA/triethyleneglycol dimethacrylate controls. These findings lend support for further development and evaluations of polymerizable cyclodextrin derivatives for use in dental materials.


Assuntos
Resinas Compostas/química , beta-Ciclodextrinas/química , Análise de Variância , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas/efeitos da radiação , Adaptação Marginal Dentária , Análise do Estresse Dentário , Teste de Materiais , Metacrilatos , Transição de Fase , Maleabilidade , Polietilenoglicóis , Ácidos Polimetacrílicos , beta-Ciclodextrinas/efeitos da radiação
5.
Dent Mater ; 20(6): 513-21, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15134938

RESUMO

OBJECTIVES: Methacrylated beta-cyclodextrin (MCD) is a candidate dental monomer that can complex molecules within its hydrophobic cavity. This study determined the effects of complexation of polymerization initiators such as camphorquinone (CQ) and ethyl-4-dimethylaminobenzoate (4E) with MCD on the flexural strength (FS) and degree of conversion (DC) of resulting dental composite formulations. METHODS: Complexation of CQ and 4E with MCD was studied by thin layer chromatography. A mass fraction of 44% 2-hydroxyethylmethacrylate or triethyleneglycoldimethacrylate was mixed separately with a mass fraction of 56% MCD to produce a workable formulation. The mixture was activated with varied amounts of CQ and 4E. One part by mass of the activated resin formulation was mixed with three parts by mass of glass filler. Specimens for FS were prepared by filling molds with composites and curing for 2 min. The cured specimens were immersed in 37 degrees C water for 24 h and FS was measured with an Instron machine at a crosshead speed of 0.5 mm/min. DC in MCD-based resin formulations was measured with a differential photocalorimeter under nitrogen. RESULTS: MCD appears to form inclusion complexes with CQ and 4E. As a result, FS and DC of MCD-based composites vary significantly as a function of the concentration of polymerization initiators used in the formulations. SIGNIFICANCE: Complexation of polymerization initiators with MCD can influence the FS and DC in MCD-based dental formulations and should be taken into consideration when evaluating MCD as a dental monomer.


Assuntos
Resinas Compostas/química , Ciclodextrinas/química , beta-Ciclodextrinas , Aminobenzoatos/química , Análise de Variância , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Metacrilatos/química , Estrutura Molecular , Transição de Fase , Maleabilidade , Estatísticas não Paramétricas , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA