Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 577(7788): 103-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827281

RESUMO

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Assuntos
Caspase 8/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo , Mutação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 3/metabolismo , Feminino , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
2.
Am J Med Genet A ; 194(5): e63516, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168088

RESUMO

The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Deficiência Intelectual , Megalencefalia , Displasia Septo-Óptica , Síndrome de Sotos , Criança , Humanos , Fatores de Transcrição NFI/genética , Síndrome de Sotos/genética , Éxons/genética , Megalencefalia/genética , Deficiência Intelectual/genética , Análise de Sequência de RNA
3.
Proc Natl Acad Sci U S A ; 117(1): 552-562, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871193

RESUMO

Systemic sclerosis (SSc) is a clinically heterogeneous autoimmune disease characterized by mutually exclusive autoantibodies directed against distinct nuclear antigens. We examined HLA associations in SSc and its autoantibody subsets in a large, newly recruited African American (AA) cohort and among European Americans (EA). In the AA population, the African ancestry-predominant HLA-DRB1*08:04 and HLA-DRB1*11:02 alleles were associated with overall SSc risk, and the HLA-DRB1*08:04 allele was strongly associated with the severe antifibrillarin (AFA) antibody subset of SSc (odds ratio = 7.4). These African ancestry-predominant alleles may help explain the increased frequency and severity of SSc among the AA population. In the EA population, the HLA-DPB1*13:01 and HLA-DRB1*07:01 alleles were more strongly associated with antitopoisomerase (ATA) and anticentromere antibody-positive subsets of SSc, respectively, than with overall SSc risk, emphasizing the importance of HLA in defining autoantibody subtypes. The association of the HLA-DPB1*13:01 allele with the ATA+ subset of SSc in both AA and EA patients demonstrated a transancestry effect. A direct correlation between SSc prevalence and HLA-DPB1*13:01 allele frequency in multiple populations was observed (r = 0.98, P = 3 × 10-6). Conditional analysis in the autoantibody subsets of SSc revealed several associated amino acid residues, mostly in the peptide-binding groove of the class II HLA molecules. Using HLA α/ß allelic heterodimers, we bioinformatically predicted immunodominant peptides of topoisomerase 1, fibrillarin, and centromere protein A and discovered that they are homologous to viral protein sequences from the Mimiviridae and Phycodnaviridae families. Taken together, these data suggest a possible link between HLA alleles, autoantibodies, and environmental triggers in the pathogenesis of SSc.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/genética , Antígenos HLA/genética , Mimetismo Molecular/imunologia , Escleroderma Sistêmico/genética , Negro ou Afro-Americano/genética , Alelos , Sequência de Aminoácidos/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Autoantígenos/imunologia , Biologia Computacional , Conjuntos de Dados como Assunto , Feminino , Predisposição Genética para Doença , Antígenos HLA/imunologia , Humanos , Masculino , Mimiviridae/imunologia , Phycodnaviridae/imunologia , Estrutura Secundária de Proteína/genética , Medição de Risco , Escleroderma Sistêmico/epidemiologia , Escleroderma Sistêmico/imunologia , Homologia de Sequência de Aminoácidos , População Branca/genética
4.
Hum Genet ; 140(1): 217-227, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33211200

RESUMO

Non-obstructive azoospermia (NOA), the lack of spermatozoa in semen due to impaired spermatogenesis affects nearly 1% of men. In about half of cases, an underlying cause for NOA cannot be identified. This study aimed to identify novel variants associated with idiopathic NOA. We identified a nonconsanguineous family in which multiple sons displayed the NOA phenotype. We performed whole-exome sequencing in three affected brothers with NOA, their two unaffected brothers and their father, and identified compound heterozygous frameshift variants (one novel and one extremely rare) in Telomere Repeat Binding Bouquet Formation Protein 2 (TERB2) that segregated perfectly with NOA. TERB2 interacts with TERB1 and Membrane Anchored Junction Protein (MAJIN) to form the tripartite meiotic telomere complex (MTC), which has been shown in mouse models to be necessary for the completion of meiosis and both male and female fertility. Given our novel findings of TERB2 variants in NOA men, along with the integral role of the three MTC proteins in spermatogenesis, we subsequently explored exome sequence data from 1495 NOA men to investigate the role of MTC gene variants in spermatogenic impairment. Remarkably, we identified two NOA patients with likely damaging rare homozygous stop and missense variants in TERB1 and one NOA patient with a rare homozygous missense variant in MAJIN. Available testis histology data from three of the NOA patients indicate germ cell maturation arrest, consistent with mouse phenotypes. These findings suggest that variants in MTC genes may be an important cause of NOA in both consanguineous and outbred populations.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Meiose/genética , Proteínas de Membrana/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Adulto , Idoso , Exoma/genética , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Espermatogênese/genética , Testículo/patologia , Sequenciamento do Exoma/métodos
5.
Hum Mutat ; 40(2): 162-176, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461122

RESUMO

KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal-hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano-Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild-type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss-of-function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype-phenotype spectrum for KCNE1 variants.


Assuntos
Surdez/genética , Síndrome de Jervell-Lange Nielsen/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Síndrome de Romano-Ward/genética , Adolescente , Adulto , Códon sem Sentido/genética , Surdez/patologia , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Heterozigoto , Homozigoto , Humanos , Síndrome de Jervell-Lange Nielsen/patologia , Síndrome do QT Longo , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Síndrome de Romano-Ward/patologia , Adulto Jovem
6.
N Engl J Med ; 374(7): 656-63, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26841242

RESUMO

Patients with autosomal dominant vibratory urticaria have localized hives and systemic manifestations in response to dermal vibration, with coincident degranulation of mast cells and increased histamine levels in serum. We identified a previously unknown missense substitution in ADGRE2 (also known as EMR2), which was predicted to result in the replacement of cysteine with tyrosine at amino acid position 492 (p.C492Y), as the only nonsynonymous variant cosegregating with vibratory urticaria in two large kindreds. The ADGRE2 receptor undergoes autocatalytic cleavage, producing an extracellular subunit that noncovalently binds a transmembrane subunit. We showed that the variant probably destabilizes an autoinhibitory subunit interaction, sensitizing mast cells to IgE-independent vibration-induced degranulation. (Funded by the National Institutes of Health.).


Assuntos
Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/genética , Urticária/genética , Vibração/efeitos adversos , Biópsia , Degranulação Celular/genética , Feminino , Histamina/sangue , Humanos , Líbano , Masculino , Mastócitos/fisiologia , Pessoa de Meia-Idade , Linhagem , Receptores Acoplados a Proteínas G/metabolismo , Pele/patologia , Urticária/sangue , Urticária/etiologia
9.
Neurogenetics ; 13(2): 115-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22371254

RESUMO

We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.


Assuntos
Proteínas de Membrana/genética , Músculo Esquelético/metabolismo , Doenças Musculares/congênito , Doenças Musculares/genética , Mutação , Células Satélites de Músculo Esquelético/metabolismo , Animais , Feminino , Genes Recessivos , Humanos , Masculino , Proteínas de Membrana/metabolismo , Músculo Esquelético/patologia , Linhagem , Fenótipo , Peixe-Zebra
10.
Artigo em Inglês | MEDLINE | ID: mdl-36379720

RESUMO

Congenital myasthenic syndrome (CMS) is a group of 32 disorders involving genetic dysfunction at the neuromuscular junction resulting in skeletal muscle weakness that worsens with physical activity. Precise diagnosis and molecular subtype identification are critical for treatment as medication for one subtype may exacerbate disease in another (Engel et al., Lancet Neurol 14: 420 [2015]; Finsterer, Orphanet J Rare Dis 14: 57 [2019]; Prior and Ghosh, J Child Neurol 36: 610 [2021]). The SNAP25-related CMS subtype (congenital myasthenic syndrome 18, CMS18; MIM #616330) is a rare disorder characterized by muscle fatigability, delayed psychomotor development, and ataxia. Herein, we performed rapid whole-genome sequencing (rWGS) on a critically ill newborn leading to the discovery of an unreported pathogenic de novo SNAP25 c.529C > T; p.Gln177Ter variant. In this report, we present a novel case of CMS18 with complex neonatal consequence. This discovery offers unique insight into the extent of phenotypic severity in CMS18, expands the reported SNAP25 variant phenotype, and paves a foundation for personalized management for CMS18.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Mapeamento Cromossômico , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Linhagem , Fenótipo , Proteína 25 Associada a Sinaptossoma/genética , Sequenciamento Completo do Genoma
11.
Mol Genet Genomic Med ; 10(4): e1888, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119225

RESUMO

BACKGROUND: Genetic disorders contribute to significant morbidity and mortality in critically ill newborns. Despite advances in genome sequencing technologies, a majority of neonatal cases remain unsolved. Complex structural variants (SVs) often elude conventional genome sequencing variant calling pipelines and will explain a portion of these unsolved cases. METHODS: As part of the Utah NeoSeq project, we used a research-based, rapid whole-genome sequencing (WGS) protocol to investigate the genomic etiology for a newborn with a left-sided congenital diaphragmatic hernia (CDH) and cardiac malformations, whose mother also had a history of CDH and atrial septal defect. RESULTS: Using both a novel, alignment-free and traditional alignment-based variant callers, we identified a maternally inherited complex SV on chromosome 8, consisting of an inversion flanked by deletions. This complex inversion, further confirmed using orthogonal molecular techniques, disrupts the ZFPM2 gene, which is associated with both CDH and various congenital heart defects. CONCLUSIONS: Our results demonstrate that complex structural events, which often are unidentifiable or not reported by clinically validated testing procedures, can be discovered and accurately characterized with conventional, short-read sequencing and underscore the utility of WGS as a first-line diagnostic tool.


Assuntos
Hérnias Diafragmáticas Congênitas , Proteínas de Ligação a DNA/genética , Genômica , Hérnias Diafragmáticas Congênitas/genética , Humanos , Recém-Nascido , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma/métodos
12.
BMC Med Genet ; 12: 87, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21708040

RESUMO

BACKGROUND: Many myopathies share clinical features in common, and diagnosis often requires genetic testing. We ascertained a family in which five siblings presented with distal muscle weakness of unknown etiology. METHODS: We performed high-density genomewide linkage analysis and mutation screening of candidate genes to identify the genetic defect in the family. Preserved clinical biopsy material was reviewed to confirm the diagnosis, and reverse transcriptase PCR was used to determine the molecular effect of a splice site mutation. RESULTS: The linkage scan excluded the majority of known myopathy genes, but one linkage peak included the gene GNE, in which mutations cause autosomal recessive hereditary inclusion body myopathy type 2 (HIBM2). Muscle biopsy tissue from a patient showed myopathic features, including small basophilic fibers with vacuoles. Sequence analysis of GNE revealed affected individuals were compound heterozygous for a novel mutation in the 5' splice donor site of intron 10 (c.1816+5G>A) and a previously reported missense mutation (c.2086G>A, p.V696M), confirming the diagnosis as HIBM2. The splice site mutation correlated with exclusion of exon 10 from the transcript, which is predicted to produce an in-frame deletion (p.G545_D605del) of 61 amino acids in the kinase domain of the GNE protein. The father of the proband was heterozygous for the splice site mutation and exhibited mild distal weakness late in life. CONCLUSIONS: Our study expands on the extensive allelic heterogeneity of HIBM2 and demonstrates the value of linkage analysis in resolving ambiguous clinical findings to achieve a molecular diagnosis.


Assuntos
Ligação Genética , Técnicas de Diagnóstico Molecular/métodos , Complexos Multienzimáticos/genética , Mutação/genética , Miosite de Corpos de Inclusão/congênito , Miosite de Corpos de Inclusão/genética , Sítios de Splice de RNA/genética , Adulto , Idoso , Análise Mutacional de DNA , Feminino , Genes Recessivos , Genômica , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Células Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Miosite de Corpos de Inclusão/diagnóstico , Miosite de Corpos de Inclusão/patologia , Linhagem , Vacúolos/metabolismo
13.
Neurogenetics ; 11(4): 449-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20623375

RESUMO

Limb girdle muscular dystrophy type 2 (LGMD2) is a genetically heterogeneous autosomal recessive disorder caused by mutations in 15 known genes. DNA sequencing of all candidate genes can be expensive and laborious, whereas a selective sequencing approach often fails to provide a molecular diagnosis. We aimed to efficiently identify pathogenic mutations via homozygosity mapping in a population in which the genetics of LGMD2 has not been well characterized. Thirteen consanguineous families containing a proband with LGMD2 were recruited from Saudi Arabia, and for 11 of these families, selected individuals were genotyped at 10,204 single nucleotide polymorphisms. Linkage analysis excluded all but one or two known genes in ten of 11 genotyped families, and haplotype comparisons between families allowed further reduction in the number of candidate genes that were screened. Mutations were identified by DNA sequencing in all 13 families, including five novel mutations in four genes, by sequencing at most two genes per family. One family was reclassified as having a different myopathy based on genetic and clinical data after linkage analysis excluded all known LGMD2 genes. LGMD2 subtypes A and B were notably absent from our sample of patients, indicating that the distribution of LGMD2 mutations in Saudi Arabian families may be different than in other populations. Our data demonstrate that homozygosity mapping in consanguineous pedigrees offers a more efficient means of discovering mutations that cause heterogeneous disorders than comprehensive sequencing of known candidate genes.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Adolescente , Idade de Início , Criança , Pré-Escolar , Consanguinidade , Saúde da Família , Feminino , Ligação Genética , Genótipo , Homozigoto , Humanos , Lactente , Escore Lod , Masculino , Linhagem , Arábia Saudita
14.
J Invest Dermatol ; 140(11): 2210-2220.e5, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32222457

RESUMO

A role for the adhesion G-protein coupled receptor ADGRE2 or EMR2 in mechanosensing was revealed by the finding of a missense substitution (p.C492Y) associated with familial vibratory urticaria. In these patients, friction of the skin induces mast cell hyper-degranulation through p.C492Y-ADGRE2, causing localized hives, flushing, and hypotension. We have now characterized the responses and intracellular signals elicited by mechanical activation in human mast cells expressing p.C492Y-ADGRE2 and attached to dermatan sulfate, a ligand for ADGRE2. The presence of p.C492Y-ADGRE2 reduced the threshold to activation and increased the extent of degranulation along with the percentage of mast cells responding. Vibration caused phospholipase C activation, transient increases in cytosolic calcium, and downstream activation of phosphoinositide 3-kinase and extracellular signal-regulated kinases 1 and 2 by Gßγ, Gαq/11, and Gαi/o-independent mechanisms. Degranulation induced by vibration was dependent on phospholipase C pathways, including calcium, protein kinase C, and phosphoinositide 3-kinase but not extracellular signal-regulated kinases 1/2 pathways, along with pertussis toxin-sensitive signals. In addition, mechanoactivation of mast cells stimulated the synthesis and release of prostaglandin D2, to our knowledge a previously unreported mediator in vibratory urticaria, and extracellular signal-regulated kinases 1/2 activation was required for this response together with calcium, protein kinase C, and to some extent, phosphoinositide 3-kinase. Our studies thus identified critical molecular events initiated by mechanical forces and potential therapeutic targets for patients with vibratory urticaria.


Assuntos
Mastócitos/fisiologia , Receptores Acoplados a Proteínas G/genética , Urticária/etiologia , Cálcio/metabolismo , Degranulação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Mecanotransdução Celular , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/fisiologia , Prostaglandina D2/fisiologia , Proteína Quinase C/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Tetraspanina 30/fisiologia , Fosfolipases Tipo C/fisiologia , Urticária/genética , Vibração/efeitos adversos
15.
Arthritis Rheumatol ; 70(10): 1654-1660, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29732714

RESUMO

OBJECTIVE: Whole-exome sequencing (WES) studies in systemic sclerosis (SSc) patients of European American (EA) ancestry have identified variants in the ATP8B4 gene and enrichment of variants in genes in the extracellular matrix (ECM)-related pathway that increase SSc susceptibility. This study was undertaken to evaluate the association of the ATP8B4 gene and the ECM-related pathway with SSc in a cohort of African American (AA) patients. METHODS: SSc patients of AA ancestry were enrolled from 23 academic centers across the US under the Genome Research in African American Scleroderma Patients consortium. Unrelated AA individuals without serologic evidence of autoimmunity who were enrolled in the Howard University Family Study were used as unaffected controls. Functional variants in genes reported in the 2 WES studies in EA patients with SSc were selected for gene association testing using the optimized sequence kernel association test (SKAT-O) and pathway analysis by Ingenuity Pathway Analysis in 379 patients and 411 controls. RESULTS: Principal components analysis demonstrated that the patients and controls had similar ancestral backgrounds, with roughly equal proportions of mean European admixture. Using SKAT-O, we examined the association of individual genes that were previously reported in EA patients and none remained significant, including ATP8B4 (P = 0.98). However, we confirmed the previously reported association of the ECM-related pathway with enrichment of variants within the COL13A1, COL18A1, COL22A1, COL4A3, COL4A4, COL5A2, PROK1, and SERPINE1 genes (corrected P = 1.95 × 10-4 ). CONCLUSION: In the largest genetic study in AA patients with SSc to date, our findings corroborate the role of functional variants that aggregate in a fibrotic pathway and increase SSc susceptibility.


Assuntos
Negro ou Afro-Americano/genética , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/etnologia , Escleroderma Sistêmico/etnologia , Escleroderma Sistêmico/genética , Adenosina Trifosfatases/genética , Adulto , Proteínas da Matriz Extracelular/genética , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , População Branca/genética , Sequenciamento do Exoma
16.
Nat Genet ; 48(1): 74-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642240

RESUMO

Patients with a combined immunodeficiency characterized by normal numbers but impaired function of T and B cells had a homozygous p.Tyr20His substitution in transferrin receptor 1 (TfR1), encoded by TFRC. The substitution disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 expression on the cell surface. Iron citrate rescued the lymphocyte defects, and expression of wild-type but not mutant TfR1 rescued impaired transferrin uptake in patient-derived fibroblasts. Tfrc(Y20H/Y20H) mice recapitulated the immunological defects of patients. Despite the critical role of TfR1 in erythrocyte development and function, patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient-derived fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity.


Assuntos
Antígenos CD/genética , Antígenos CD/imunologia , Síndromes de Imunodeficiência/genética , Mutação de Sentido Incorreto , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Imunidade Adaptativa/genética , Anemia/genética , Animais , Antígenos CD/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Endocitose , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oxirredutases , Linhagem , Receptores da Transferrina/metabolismo
17.
Neuromuscul Disord ; 23(12): 975-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24128691

RESUMO

FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family.


Assuntos
Proteínas Cromossômicas não Histona/genética , Exoma/genética , Distrofia Muscular Facioescapuloumeral/genética , Adolescente , Citocinas/metabolismo , Análise Mutacional de DNA , Saúde da Família , Humanos , Masculino , Fenótipo
18.
PLoS One ; 5(8): e12432, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20824210

RESUMO

BACKGROUND: Human lifespan is approximately 25% heritable, and genetic factors may be particularly important for achieving exceptional longevity. Accordingly, siblings of centenarians have a dramatically higher probability of reaching extreme old age than the general population. METHODOLOGY/PRINCIPAL FINDINGS: To map the loci conferring a survival advantage, we performed the second genomewide linkage scan on human longevity and the first using a high-density marker panel of single nucleotide polymorphisms. By systematically testing a range of minimum age cutoffs in 279 families with multiple long-lived siblings, we identified a locus on chromosome 3p24-22 with a genomewide significant allele-sharing LOD score of 4.02 (empirical P = 0.037) and a locus on chromosome 9q31-34 with a highly suggestive LOD score of 3.89 (empirical P = 0.054). The empirical P value for the combined result was 0.002. A third novel locus with a LOD score of 4.05 on chromosome 12q24 was detected in a subset of the data, and we also obtained modest evidence for a previously reported interval on chromosome 4q22-25. CONCLUSIONS/SIGNIFICANCE: Our linkage data should facilitate the discovery of both common and rare variants that determine genetic variability in lifespan.


Assuntos
Ligação Genética/genética , Loci Gênicos/genética , Genoma Humano/genética , Longevidade/genética , Idoso de 80 Anos ou mais , Cromossomos Humanos/genética , Feminino , Humanos , Escore Lod , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA