Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 57(20): 5680-5687, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118082

RESUMO

This paper presents 1.6 MHz scan rate, non-intrusive, time-resolved temperature measurements of a normal shock reflection from a plane end wall within a shock tube. A vertical-cavity surface-emitting laser (VCSEL) was used to conduct tunable diode laser absorption spectroscopy with water vapor as the probe species. The results are compared with analytical predictions. Temperatures measured with this technique agree within a single-scan standard deviation of ±33 K with calculated temperatures at a VCSEL modulation frequency of 800 kHz, which is sufficiently rapid enough to be used to investigate highly transient shock wave interaction processes.

2.
Opt Lett ; 40(19): 4560-2, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421581

RESUMO

Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. This Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylate and show parts-per-billion per root hertz sensitivity measured in real-time.

3.
Opt Express ; 22(9): 10519-34, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921754

RESUMO

Optical cavity enhancement is a highly desirable process to make sensitive direct-absorption spectroscopic measurements of unknown substances, such as explosives, illicit material, or other species of interest. This paper reports advancements in the development of real-time cavity ringdown spectroscopy over a wide-bandwidth, with the aim to make headspace measurements of molecules at trace levels. We report results of two pulsed quantum cascade systems operating between (1200 to 1320)cm(-1) and (1316 to 1613)cm(-1) that measure the headspace of nitromethane, acetonitrile, acetone, and nitroglycerin, where the spectra are obtained in less than four seconds and contain at least 150,000 spectral wavelength datapoints.

4.
Opt Lett ; 37(15): 3018-20, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859071

RESUMO

This Letter presents offline estimation results for the decay-time constant for an experimental Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

5.
Opt Express ; 19(7): 6377-86, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451665

RESUMO

This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.


Assuntos
Algoritmos , Interferometria/instrumentação , Interferometria/métodos , Análise Espectral/instrumentação , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA