Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2725-2728, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748146

RESUMO

Supercontinuum generation (SCG) is an important nonlinear optical process enabling broadband light sources for many applications, for which silicon nitride (Si3N4) has emerged as a leading on-chip platform. To achieve suitable group velocity dispersion and high confinement for broadband SCG the Si3N4 waveguide layer used is typically thick (>∼700 nm), which can lead to high stress and cracks unless specialized processing steps are used. Here, we report on efficient octave-spanning SCG in a thinner moderate-confinement 400-nm Si3N4 platform using a highly nonlinear tellurium oxide (TeO2) coating. An octave supercontinuum spanning from 0.89 to 2.11 µm is achieved at a low peak power of 258 W using a 100-fs laser centered at 1565 nm. Our numerical simulations agree well with the experimental results giving a nonlinear parameter of 2.5 ± 0.5 W-1m-1, an increase by a factor of 2.5, when coating the Si3N4 waveguide with a TeO2 film. This work demonstrates highly efficient SCG via effective dispersion engineering and an enhanced nonlinearity in CMOS-compatible hybrid TeO2-Si3N4 waveguides and a promising route to monolithically integrated nonlinear, linear, and active functionalities on a single silicon photonic chip.

2.
Opt Express ; 31(12): 20244-20255, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381423

RESUMO

We demonstrate low-threshold and wide emission wavelength range hybrid-integrated silicon-thulium microdisk lasers based on a pulley-coupled design. The resonators are fabricated on a silicon-on-insulator platform using a standard foundry process and the gain medium is deposited using a straightforward, low-temperature post-processing step. We show lasing in 40- and 60-µm diameter microdisks with up to 2.6 mW double-sided output power and bidirectional slope efficiencies of up to 13.4% with respect to 1620 nm pump power launched to the bus waveguides. We observe thresholds less than 1 mW versus on-chip pump power and both single-mode and multimode laser emission spanning across wavelengths from 1825 to 1939nm. These low threshold lasers with emissions over a > 100 nm range open the door to monolithic silicon photonic integrated circuits with broadband optical gain and highly compact and efficient light sources in the emerging ∼1.8-2.0 µm wavelength band.

3.
Opt Express ; 30(17): 30164-30175, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242125

RESUMO

Recent advances in silicon photonic components operating in the thulium-doped fiber amplifier (TDFA) wavelength regime around 2-µm have shown that these wavelengths hold great promise for on-chip photonic systems. Here we present our work on characterizing a Mach-Zehnder interferometer coupled silicon photonic ring resonator operating in the TDFA window for optical time delay applications. We describe the optical transmission and variable time delay properties of the resonator, including a detailed characterization and comparison of the directional coupler and Mach-Zehnder interferometer base components at both 1930 and 1550 nm wavelengths. The results show tuning of a ring from a 190-ps peak time delay at a resonant extinction ratio of 5.1-dB to a 560-ps peak time delay at an extinction ratio of 11.0-dB, in good agreement with optical models of the device. These results demonstrate significant promise towards the future application of TDFA band devices in optical time delay systems.

4.
Opt Lett ; 46(8): 1928, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857106

RESUMO

This publisher's note contains corrections to Opt. Lett.44, 5788 (2019)OPLEDP0146-959210.1364/OL.44.005788.

5.
Opt Express ; 28(20): 30130-30140, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114897

RESUMO

We report on the fabrication and optical characterization of erbium-ytterbium co-doped aluminum oxide (Al2O3:Er3+:Yb3+) waveguides using low-cost, low-temperature deposition and etching steps. We deposited Al2O3:Er3+:Yb3+ films using reactive co-sputtering, with Er3+ and Yb3+ ion concentrations ranging from 1.4-1.6 × 1020 and 0.9-2.1 × 1020 ions/cm3, respectively. We etched ridge waveguides in 85% pure phosphoric acid at 60°C, allowing for structures with minimal polarization sensitivity and acceptable bend radius suitable for optical amplifiers and avoiding alternative etching chemistries which use hazardous gases. Scanning-electron-microscopy (SEM) and profilometry were used to assess the etch depth, sidewall roughness, and facet profile of the waveguides. The Al2O3:Er3+:Yb3+ films exhibit a background loss as low as 0.2 ± 0.1 dB/cm and the waveguide loss after structuring is determined to be 0.5 ± 0.3 dB/cm at 1640 nm. Internal net gain of 4.3 ± 0.9 dB is demonstrated at 1533 nm for a 3.0 cm long waveguide when pumped at 970 nm. The material system is promising moving forward for compact Er-Yb co-doped waveguide amplifiers and lasers on a low-cost silicon wafer-scale platform.

6.
Opt Express ; 28(12): 18538-18547, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680051

RESUMO

We report on the design, fabrication and characterization of subwavelength grating metamaterial waveguides coated with tellurium oxide. The structures are first fabricated using a standard CMOS compatible process on a silicon-on-insulator platform. Amorphous tellurium oxide top cladding material is then deposited via post-process RF magnetron sputtering. The photonic bandstructure is controlled by adjustment of the device geometry, opening a wide range of operating regimes, including subwavelength propagation, slow light and the photonic bandgap, for various wavelength bands within the 1550 nm telecommunications window. Propagation loss of 1.0 ± 0.1 dB/mm is reported for the tellurium oxide-cladded device, compared to 1.5 ± 0.1 dB/mm propagation loss reported for the silicon dioxide-cladded reference structure. This is the first time that a high-index (n > 2) oxide cladding has been demonstrated for subwavelength grating metamaterial waveguides, thus introducing a new material platform for on-chip integrated optics.

7.
Opt Express ; 27(9): 12529-12540, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052793

RESUMO

We report on high-quality tellurium oxide waveguides integrated on a low-loss silicon nitride wafer-scale platform. The waveguides consist of silicon nitride strip features, which are fabricated using a standard foundry process and a tellurium oxide coating layer that is deposited in a single post-processing step. We show that by adjusting the Si3N4 strip height and width and TeO2 layer thickness, a small mode area, small bend radius and high optical intensity overlap with the TeO2 can be obtained. We investigate transmission at 635, 980, 1310, 1550 and 2000 nm wavelengths in paperclip waveguide structures and obtain low propagation losses down to 0.6 dB/cm at 2000 nm. These results illustrate the potential for compact linear, nonlinear and active tellurite glass devices in silicon nitride photonic integrated circuits operating from the visible to mid-infrared.

8.
Opt Lett ; 44(23): 5788-5791, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774780

RESUMO

We report on thulium-doped waveguide amplifiers integrated on a low-loss silicon nitride platform. The amplifier structure consists of a thulium-doped tellurium oxide thin film coated on a silicon nitride strip waveguide on silicon. We determine a waveguide background loss of 0.7 dB/cm at 1479 nm based on the quality factor measured in microring resonators. Gain measurements were carried out in straight and 6.7-cm-long s-bend waveguides realized on a 2.2-cm-long chip. We measure internal net gain over the wavelength range 1860-2000 nm under 1620 nm pumping and up to 7.6 dB total gain at 1870 nm, corresponding to 1.1 dB/cm. These results are promising for the realization of highly compact thulium-doped amplifiers in the emerging 2 µm band for silicon-based photonic microsystems.

9.
Opt Lett ; 44(1): 118-121, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645557

RESUMO

We report on tellurium-oxide (TeO2)-coated silicon nitride microring resonators with internal quality factors up to 7.3×105, corresponding to 0.5 dB/cm waveguide loss, at wavelengths around 1550 nm. The microring resonators are fabricated using a silicon nitride foundry process followed by TeO2 coating deposition in a single post-processing step. The silicon nitride strip height of 0.2 µm enables a small microring bending radius, while the TeO2 coating thickness of 0.33 µm results in a large modal overlap with the TeO2 layer. These results are a promising step towards realizing compact and high-performance linear, nonlinear, and rare-earth-doped active integrated photonic devices with this platform.

10.
Opt Express ; 26(18): 24164-24189, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184908

RESUMO

This paper reviews recent progress in the field of optically pumped rare-earth-doped channel waveguide lasers, with a focus on operation utilizing distributed-feedback resonators on silicon wafers. Rare-earth-doped amorphous aluminum oxide thin films have been deposited onto silicon wafers by RF reactive co-sputtering from metallic Al and rare-earth targets, the spectroscopy and optical gain of Er3+, Yb3+, Nd3+, and Tm3+ ions has been investigated, and the near-infrared laser transitions near 1 µm in Yb3+, 1.5 µm in Er3+, and 2 µm in Tm3+ and Ho3+ have been demonstrated. Output power between a few µW and hundreds of mW have been achieved in different waveguide geometries, and ultranarrow-linewidth laser operation has been demonstrated.

11.
Opt Express ; 26(3): 2220-2230, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401762

RESUMO

Laser sources in the mid-infrared are of great interest due to their wide applications in detection, sensing, communication and medicine. Silicon photonics is a promising technology which enables these laser devices to be fabricated in a standard CMOS foundry, with the advantages of reliability, compactness, low cost and large-scale production. In this paper, we demonstrate a holmium-doped distributed feedback laser monolithically integrated on a silicon photonics platform. The Al2O3:Ho3+ glass is used as gain medium, which provides broadband emission around 2 µm. By varying the distributed feedback grating period and Al2O3:Ho3+ gain layer thickness, we show single mode laser emission at wavelengths ranging from 2.02 to 2.10 µm. Using a 1950 nm pump, we measure a maximum output power of 15 mW, a slope efficiency of 2.3% and a side-mode suppression ratio in excess of 50 dB. The introduction of a scalable monolithic light source emitting at > 2 µm is a significant step for silicon photonic microsystems operating in this highly promising wavelength region.

12.
Opt Express ; 26(9): 11161-11170, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716040

RESUMO

We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 106. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms.

13.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469328

RESUMO

We report on thermal and evanescent field sensing from a tellurium oxide optical microcavity resonator on a silicon photonics platform. The on-chip resonator structure is fabricated using silicon-photonics-compatible processing steps and consists of a silicon-on-insulator waveguide next to a circular trench that is coated in a tellurium oxide film. We characterize the device's sensitivity by both changing the temperature and coating water over the chip and measuring the corresponding shift in the cavity resonance wavelength for different tellurium oxide film thicknesses. We obtain a thermal sensitivity of up to 47 pm/°C and a limit of detection of 2.2 × 10-3 RIU for a device with an evanescent field sensitivity of 10.6 nm/RIU. These results demonstrate a promising approach to integrating tellurium oxide and other novel microcavity materials into silicon microphotonic circuits for new sensing applications.

14.
Opt Express ; 25(12): 13705-13713, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788913

RESUMO

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔνQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (R-SHDI).

15.
Opt Express ; 25(15): 18058-18065, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789295

RESUMO

An optically-pumped, integrated distributed feedback laser is demonstrated using a CMOS compatible process, where a record-low-temperature deposited gain medium enables integration with active devices such as modulators and detectors. A pump threshold of 24.9 mW and a slope efficiency of 1.3 % is demonstrated at the lasing wavelength of 1552.98 nm. The rare-earth-doped aluminum oxide, used as the gain medium in this laser, is deposited by a substrate-bias-assisted reactive sputtering process. This process yields optical quality films with 0.1 dB/cm background loss at the deposition temperature of 250 °C, and therefore is fully compatible as a back-end-of-line CMOS process. The aforementioned laser's performance is comparable to previous lasers having gain media fabricated at much higher temperatures (> 550 °C). This work marks a crucial step towards monolithic integration of amplifiers and lasers in silicon microphotonic systems.

16.
Opt Lett ; 42(9): 1772-1775, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454157

RESUMO

We demonstrate monolithic integration of a wavelength division multiplexed light source for silicon photonics by a cascade of erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers. Four DFB lasers with uniformly spaced emission wavelengths are cascaded in a series to simultaneously operate with no additional tuning required. A total output power of -10.9 dBm is obtained from the four DFBs with an average side mode suppression ratio of 38.1±2.5 dB. We characterize the temperature-dependent wavelength shift of the cascaded DFBs and observe a uniform dλ/dT of 0.02 nm/°C across all four lasers.

17.
Opt Lett ; 42(6): 1181-1184, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295078

RESUMO

Mid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.55 µm wavelength, while in the 2 µm region, to the best of our knowledge, high-power, high-efficiency, and monolithic light sources have been minimally investigated. In this Letter, we report on high-power CMOS-compatible thulium-doped distributed feedback and distributed Bragg reflector lasers with single-mode output powers up to 267 and 387 mW, and slope efficiencies of 14% and 23%, respectively. More than 70 dB side-mode suppression ratio is achieved for both lasers. This work extends the applicability of silicon photonic microsystems in the 2 µm region.

18.
Opt Lett ; 41(24): 5708-5711, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973495

RESUMO

We demonstrate an ultra-compact and low-threshold thulium microcavity laser that is monolithically integrated on a silicon chip. The integrated microlaser consists of an active thulium-doped aluminum oxide microcavity beside a passive silicon nitride bus waveguide, which enables on-chip pump-input and laser-output coupling. We observe lasing in the wavelength range of 1.8-1.9 µm under 1.6 µm resonant pumping and at varying waveguide-microcavity gap sizes. The microlaser exhibits a threshold as low as 773 µW (226 µW) and a slope efficiency as high as 24% (48%) with respect to the pump power coupled into the silicon nitride bus waveguide (microcavity). Its small footprint, minimal energy consumption, high efficiency, and silicon compatibility demonstrate that on-chip thulium lasers are promising light sources for silicon microphotonic systems.

19.
Opt Express ; 23(6): 7832-41, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837122

RESUMO

Third-harmonic generation (THG) has applications ranging from wavelength conversion to pulse characterization, and has important implications for quantum sources of entangled photons. However, on-chip THG devices are nearly unexplored because bulk techniques are difficult to adapt to integrated photonic circuits. Using sub-micrometer-wide polycrystalline anatase TiO2 waveguides, we demonstrate third-harmonic generation on a CMOS-compatible platform. We correlate higher conversion efficiencies with phase-matching between the fundamental pump mode and higher-order signal modes. Using scattered light, we estimate conversion efficiencies as high as 2.5% using femtosecond pulses, and thus demonstrate that multimode TiO2 waveguides are promising for wideband wavelength conversion and new applications ranging from sensors to triplet-photon sources.

20.
Opt Express ; 22(10): 12226-37, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25051584

RESUMO

We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA