Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 145(24): 13312-13325, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294168

RESUMO

Next-generation batteries based on sustainable multivalent working ions, such as Mg2+, Ca2+, or Zn2+, have the potential to improve the performance, safety, and capacity of current battery systems. Development of such multivalent ion batteries is hindered by a lack of understanding of multivalent ionics in solids, which is crucial for many aspects of battery operation. For instance, multivalent ionic transport was assumed to be correlated with electronic transport; however, we have previously shown that Zn2+ can conduct in electronically insulating ZnPS3 with a low activation energy of 350 meV, albeit with low ionic conductivity. Here, we show that exposure of ZnPS3 to environments with water vapor at different relative humidities results in room-temperature conductivity increases of several orders of magnitude, reaching as high as 1.44 mS cm-1 without decomposition or structural changes. We utilize impedance spectroscopy with ion selective electrodes, ionic transference number measurements, and deposition and stripping of Zn metal, to confirm that both Zn2+ and H+ act as mobile ions. The contribution from Zn2+ to the ionic conductivity in water vapor exposed ZnPS3 is high, representing superionic Zn2+ conduction. The present study demonstrates that it is possible to enhance multivalent ion conduction of electronically insulating solids as a result of water adsorption and highlights the importance of ensuring that increased conductivity in water vapor exposed multivalent ion systems is in fact due to mobile multivalent ions and not solely H+.

2.
Magn Reson Chem ; 58(11): 1055-1070, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31997384

RESUMO

A new approach for processing satellite-transition magic-angle spinning (STMAS) and multiple-quantum magic-angle spinning (MQMAS) data, based on the two-dimensional one-pulse (TOP) method, which separates the second-rank quadrupolar anisotropy and paramagnetic shift interactions via a double shearing transformation, is described. This method is particularly relevant in paramagnetic systems, where substantial inhomogeneous broadening may broaden the lineshapes. Furthermore, it possesses an advantage over the conventional processing of MQMAS and STMAS spectra because it overcomes the limitation on the spectral width in the indirect dimension imposed by rotor synchronization of the sampling interval. This method was applied experimentally to the 27 Al solid-state nuclear magnetic resonance of a series of yttrium aluminum garnets (YAGs) doped with different lanthanide ions, from which the quadrupolar parameters of paramagnetically shifted and bulk unshifted sites were extracted. These parameters were then compared with density functional theory calculations, which permitted a better understanding of the local structure of Ln substituent ions in the YAG lattice.

3.
Infect Immun ; 82(9): 3713-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24958711

RESUMO

Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin "pedestals" is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment.


Assuntos
Actinas/metabolismo , Aderência Bacteriana/fisiologia , Translocação Bacteriana/fisiologia , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica/fisiologia
4.
PLoS Pathog ; 6(8): e1001056, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20808845

RESUMO

Upon infection of mammalian cells, enterohemorrhagic E. coli (EHEC) O157:H7 utilizes a type III secretion system to translocate the effectors Tir and EspF(U) (aka TccP) that trigger the formation of F-actin-rich 'pedestals' beneath bound bacteria. EspF(U) is localized to the plasma membrane by Tir and binds the nucleation-promoting factor N-WASP, which in turn activates the Arp2/3 actin assembly complex. Although N-WASP has been shown to be required for EHEC pedestal formation, the precise steps in the process that it influences have not been determined. We found that N-WASP and actin assembly promote EHEC-mediated translocation of Tir and EspF(U) into mammalian host cells. When we utilized the related pathogen enteropathogenic E. coli to enhance type III translocation of EHEC Tir and EspF(U), we found surprisingly that actin pedestals were generated on N-WASP-deficient cells. Similar to pedestal formation on wild type cells, Tir and EspF(U) were the only bacterial effectors required for pedestal formation, and the EspF(U) sequences required to interact with N-WASP were found to also be essential to stimulate this alternate actin assembly pathway. In the absence of N-WASP, the Arp2/3 complex was both recruited to sites of bacterial attachment and required for actin assembly. Our results indicate that actin assembly facilitates type III translocation, and reveal that EspF(U), presumably by recruiting an alternate host factor that can signal to the Arp2/3 complex, exhibits remarkable versatility in its strategies for stimulating actin polymerization.


Assuntos
Actinas/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Proteínas de Transporte/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Microscopia de Fluorescência , Transporte Proteico/fisiologia , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
5.
Antimicrob Agents Chemother ; 53(2): 385-92, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015348

RESUMO

Yersinia pestis, the causative agent of plague, utilizes a plasmid-encoded type III secretion system (T3SS) to aid it with its resistance to host defenses. This system injects a set of effector proteins known as Yops (Yersinia outer proteins) into the cytosol of host cells that come into contact with the bacteria. T3SS is absolutely required for the virulence of Y. pestis, making it a potential target for new therapeutics. Using a novel and simple high-throughput screening method, we examined a diverse collection of chemical libraries for small molecules that inhibit type III secretion in Y. pestis. The primary screening of 70,966 compounds and mixtures yielded 421 presumptive inhibitors. We selected eight of these for further analysis in secondary assays. Four of the eight compounds effectively inhibited Yop secretion at micromolar concentrations. Interestingly, we observed differential inhibition among Yop species with some compounds. The compounds did not inhibit bacterial growth at the concentrations used in the inhibition assays. Three compounds protected HeLa cells from type III secretion-dependent cytotoxicity. Of the eight compounds examined in secondary assays, four show good promise as leads for structure-activity relationship studies. They are a diverse group, with each having a chemical scaffold not only distinct from each other but also distinct from previously described candidate type III secretion inhibitors.


Assuntos
Yersinia pestis/efeitos dos fármacos , Yersinia pestis/metabolismo , Antibacterianos/farmacologia , Anticorpos Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Translocação Bacteriana , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Células HeLa , Humanos , Plasmídeos/genética , Yersinia pestis/genética , Yersinia pestis/crescimento & desenvolvimento
6.
Cell Microbiol ; 10(4): 836-47, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18067584

RESUMO

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 induces filamentous actin-rich 'pedestals' on intestinal epithelial cells. Pedestal formation in vitro requires translocation of bacterial effectors into the host cell, including Tir, an EHEC receptor, and EspF(U), which increases the efficiency of actin assembly initiated by Tir. While inactivation of espF(U) does not alter colonization in two reservoir hosts, we utilized two disease models to explore the significance of EspF(U)-promoted actin pedestal formation. EHECDeltaespF(U) efficiently colonized the rabbit intestine during co-infection with wild-type EHEC, but co-infection studies on cultured cells suggested that EspF(U) produced by wild-type bacteria might have rescued the mutant. Significantly, EHECDeltaespF(U) by itself was fully capable of establishing colonization at 2 days post inoculation but unlike wild type, failed to expand in numbers in the caecum and colon by 7 days. In the gnotobiotic piglet model, an espF(U) deletion mutant appeared to generate actin pedestals with lower efficiency than wild type. Furthermore, aggregates of the mutant occupied a significantly smaller area of the intestinal epithelial surface than those of the wild type. Together, these findings suggest that, after initial EHEC colonization of the intestinal surface, EspF(U) may stabilize bacterial association with the epithelial cytoskeleton and promote expansion beyond initial sites of infection.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/fisiologia , Escherichia coli O157/crescimento & desenvolvimento , Proteínas de Escherichia coli/fisiologia , Mucosa Intestinal/microbiologia , Animais , Animais Recém-Nascidos , Aderência Bacteriana/fisiologia , Proteínas de Transporte/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Mucosa Intestinal/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Coelhos , Suínos , Fatores de Tempo
7.
Am J Infect Control ; 31(4): 208-14, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12806357

RESUMO

BACKGROUND: Contaminated surfaces can act as a reservoir for pathogenic microorganisms and potentially exacerbate the risk of infection. Surface disinfection and decontamination provide temporary amelioration against bacterial colonization. Disinfected surfaces eventually become contaminated, thus, mitigating the benefit of the initial disinfection. It is hypothesized that to improve on the current state of the art, a disinfectant should not only immediately disinfect a surface but also provide persistent antimicrobial action after the product has been applied. We describe here a silver-based disinfectant technology designed to provide long-lasting sanitization and disinfection to treated surfaces as evaluated on hard surfaces after repeated environmental insults. METHODS: A comparative evaluation of 6 disinfectant formulations for residual antimicrobial activity after water rinsing was performed. Log reduction of bacterial populations on disinfectant-treated substrates were measured after 30 minutes to 8 hours of exposure and compared with an untreated control. In a similar study, the residual antimicrobial activity of a silver disinfectant was evaluated against antibiotic- and biocide-resistant bacteria also after water rinsing. Further, residual antimicrobial activity of the silver disinfectant was measured after 5 cycles of rinsing, abrasion, and contamination against representative household and nosocomial pathogens (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter aerogenes, Enterococcus faecium, or Salmonella choleraesuis) after 10-minute exposure times. RESULTS: In the comparative assay, only the silver disinfectant and a persistent quaternary ammonium compound disinfectant demonstrated significant residual activity (> or =3.0 log(10) reduction to control) against S aureus whereas only the silver disinfectant demonstrated activity against Pseudomonas. No residual activity (< or = 0.5 log reduction to untreated control) was observed for the other disinfectant products. The silver-based disinfectant also showed significant and equivalent efficacy against antibiotic- and silver-resistant bacteria. In addition, the silver disinfectant was able to achieve significant residual activity in 10 minutes against all organisms tested after 1, 3, and 5 cycles of water rinse, abrasion, and microbial contamination. CONCLUSIONS: The findings show the ability of a new silver-based disinfectant to reduce bacterial populations that contact treated surfaces within minutes, highlight the potential to interrupt cross-contamination from environmental surfaces, and reduce the risk of infection within the home and health care settings.


Assuntos
Bactérias/crescimento & desenvolvimento , Desinfetantes/farmacologia , Desinfecção/métodos , Prata/farmacologia , Resistência Microbiana a Medicamentos , Microbiologia Ambiental , Produtos Domésticos
8.
Front Microbiol ; 3: 11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347213

RESUMO

Upon binding to intestinal epithelial cells, enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium trigger formation of actin pedestals beneath bound bacteria. Pedestal formation has been associated with enhanced colonization, and requires intimin, an adhesin that binds to the bacterial effector translocated intimin receptor (Tir), which is translocated to the host cell membrane and promotes bacterial adherence and pedestal formation. Intimin has been suggested to also promote cell adhesion by binding one or more host receptors, and allelic differences in intimin have been associated with differences in tissue and host specificity. We assessed the function of EHEC, EPEC, or C. rodentium intimin, or a set of intimin derivatives with varying Tir-binding abilities in animal models of infection. We found that EPEC and EHEC intimin were functionally indistinguishable during infection of gnotobiotic piglets by EHEC, and that EPEC, EHEC, and C. rodentium intimin were functionally indistinguishable during infection of C57BL/6 mice by C. rodentium. A derivative of EHEC intimin that bound Tir but did not promote robust pedestal formation on cultured cells was unable to promote C. rodentium colonization of conventional mice, indicating that the ability to trigger actin assembly, not simply to bind Tir, is required for intimin-mediated intestinal colonization. Interestingly, streptomycin pre-treatment of mice eliminated the requirement for Tir but not intimin during colonization, and intimin derivatives that were defective in Tir-binding still promoted colonization of these mice. These results indicate that EPEC, EHEC, and C. rodentium intimin are functionally interchangeable during infection of gnotobiotic piglets or conventional C57BL/6 mice, and that whereas the ability to trigger Tir-mediated pedestal formation is essential for colonization of conventional mice, intimin provides a Tir-independent activity during colonization of streptomycin pre-treated mice.

9.
Cell Microbiol ; 9(9): 2242-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17521329

RESUMO

The Tir proteins of enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are each translocated into the host plasma membrane where they promote F-actin pedestals in epithelial cells beneath adherent bacteria, but the two proteins act by different means. The canonical EPEC Tir becomes phosphorylated on tyrosine residue 474 (Y474) to recruit the host adaptor protein Nck, and also stimulates an inefficient, Nck-independent pathway utilizing tyrosine residue 454 (Y454). In contrast, the canonical EHEC Tir lacks Y474 and instead utilizes residues 452-463 to recruit EspF(U), an EHEC-specific effector that stimulates robust Nck-independent actin assembly. EHEC Tir Y458 and EPEC Tir Y454 are both part of an asparagine-proline-tyrosine (NPY) sequence. We report that each of the EHEC Tir NPY residues is required for EspF(U) recruitment and pedestal formation, and each of the EPEC Tir NPY residues is critical for inefficient, Nck-independent pedestal formation. Introduction of EspF(U) into EPEC dramatically enhanced Nck-independent actin assembly by EPEC Tir in a manner dependent on NPY(454). These results suggest that EPEC and EHEC Tir trigger a common Nck-independent actin assembly pathway and are both derived from an ancestral Tir molecule that utilized NPY to stimulate low-level pedestal formation.


Assuntos
Actinas/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Oncogênicas/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Escherichia coli Êntero-Hemorrágica/citologia , Escherichia coli Enteropatogênica/citologia , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Receptores de Superfície Celular/genética
10.
Mol Microbiol ; 63(5): 1468-81, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17302821

RESUMO

Enterohaemorrhagic Escherichia coli (EHEC) are highly infectious pathogens capable of causing severe diarrhoeal illnesses. As a critical step during their colonization, EHEC adhere intimately to intestinal epithelial cells and generate F-actin 'pedestal' structures that elevate them above surrounding cell surfaces. Intimate adhesion and pedestal formation result from delivery of the EHEC type III secretion system (TTSS) effector proteins Tir and EspF(U) into the host cell and expression of the bacterial outer membrane adhesin, intimin. To investigate a role for DNA methylation during the regulation of adhesion and pedestal formation in EHEC, we deleted the dam (DNA adenine methyltransferase) gene from EHEC O157:H7 and demonstrate that this mutation results in increased interactions with cultured host cells. EHECDeltadam exhibits dramatically elevated levels of adherence and pedestal formation when compared with wild-type EHEC, and expresses significantly higher protein levels of intimin, Tir and EspF(U). Analyses of GFP fusions, Northern blotting, reverse transcription polymerase chain reaction, and microarray experiments indicate that the abundance of Tir in the dam mutant is not due to increased transcription levels, raising the possibility that Dam methylation can indirectly control protein expression by a post-transcriptional mechanism. In contrast to other dam-deficient pathogens, EHECDeltadam is capable of robust intestinal colonization of experimentally infected animals.


Assuntos
Actinas/metabolismo , Aderência Bacteriana , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Deleção de Genes , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Adesinas Bacterianas/análise , Animais , Fusão Gênica Artificial , Proteínas de Transporte/análise , Modelos Animais de Doenças , Infecções por Escherichia coli , Escherichia coli O157/enzimologia , Proteínas de Escherichia coli/análise , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/análise , RNA Mensageiro/análise , Receptores de Superfície Celular/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Suínos , Transcrição Gênica
11.
Cell Microbiol ; 8(9): 1488-503, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16922867

RESUMO

Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) both utilize type III secretion systems that translocate the effector protein Tir into the plasma membrane of mammalian cells in order to stimulate localized actin assembly into 'pedestals'. The Tir molecule that EPEC delivers is phosphorylated within its C-terminus on tyrosine-474, and a clustered 12-residue phosphopeptide encompassing this residue initiates an efficient signalling cascade that triggers actin polymerization. In addition to Y474, tyrosine-454 of EPEC Tir is phosphorylated, although inefficiently, and promotes actin polymerization at low levels. In contrast to EPEC Tir, EHEC Tir lacks Y474 and triggers pedestal formation in a phosphotyrosine-independent manner by interacting with an additional effector protein, EspF(U). To identify EHEC Tir sequences that regulate localized actin assembly, we circumvented the strict requirements for type III translocation and directly expressed Tir derivatives in mammalian cells by transfection. Infection of Tir-expressing cells with a Tir-deficient EHEC strain demonstrated that ectopically expressed Tir localizes to the plasma membrane, is modified by mammalian serine-threonine kinases and is fully functional for actin pedestal formation. Removal of portions of the cytoplasmic N-terminus of Tir resulted in the generation of abnormally long pedestals, indicating that this region of EHEC Tir influences pedestal length. In the presence of the entire N-terminal domain, a 12-residue peptide from the C-terminus of EHEC Tir is both necessary and sufficient to recruit EspF(U) and initiate actin pedestal formation. This peptide encompasses the portion of EHEC Tir analogous to the EPEC Tir-Y454 region and is present within the Tir molecules of all pedestal-forming bacteria, suggesting that this sequence harbours a conserved signalling function.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli O157/genética , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência/métodos , Modelos Genéticos , Mutação/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Fosforilação , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA