Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Wetlands (Wilmington) ; 39(6): 1357-1366, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-34326565

RESUMO

Traditionally, ecosystem monitoring, conservation, and restoration have been conducted in a piecemeal manner at the local scale without regional landscape context. However, scientifically driven conservation and restoration decisions benefit greatly when they are based on regionally determined benchmarks and goals. Unfortunately, required data sets rarely exist for regionally important ecosystems. Because of early recognition of the extreme ecological importance of Laurentian Great Lakes coastal wetlands, and the extensive degradation that had already occurred, significant investments in coastal wetland research, protection, and restoration have been made in recent decades and continue today. Continued and refined assessment of wetland condition and trends, and the evaluation of restoration practices are all essential to ensuring the success of these investments. To provide wetland managers and decision makers throughout the Laurentian Great Lakes basin with the optimal tools and data needed to make scientifically-based decisions, our regional team of Great Lakes wetland scientists developed standardized methods and indicators used for assessing wetland condition. From a landscape perspective, at the Laurentian Great Lakes ecosystem scale, we established a stratified random-site-selection process to monitor birds, anurans, fish, macroinvertebrates, vegetation, and physicochemical conditions of coastal wetlands in the US and Canada. Monitoring of approximately 200 wetlands per year began in 2011 as the Great Lakes Coastal Wetland Monitoring Program. In this paper, we describe the development, delivery, and expected results of this ongoing international, multi-disciplinary, multi-stakeholder, landscape-scale monitoring program as a case example of successful application of landscape conservation design.

2.
Environ Monit Assess ; 190(10): 580, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203154

RESUMO

Biotic indicators are useful for assessing ecosystem health because the structure of resident communities generally reflects abiotic conditions integrated over time. We used fish data collected over 5 years for 470 Great Lakes coastal wetlands to develop multi-metric indices of biotic integrity (IBI). Sampling and IBI development were stratified by vegetation type within each wetland to account for differences in physical habitat. Metrics were evaluated against numerous indices of anthropogenic disturbance derived from water quality and surrounding land-cover variables. Separate datasets were used for IBI development and testing. IBIs were composed of 10-11 metrics for each of four vegetation types (bulrush, cattail, water lily, and submersed aquatic vegetation). Scores of all IBIs correlated well with disturbance indices using the development data, and the accuracy of our IBIs was validated using the testing data. Our fish IBIs can be used to prioritize wetland protection and restoration efforts across the Great Lakes basin. The IBIs will also be useful in monitoring programs mandated by the Agreement between Canada and the United States of America on Great Lakes Water Quality, such as for assessing Beneficial Use Impairments (BUIs) in Great Lakes Areas of Concern, and in other ecosystem management programs in Canada and the USA.


Assuntos
Monitoramento Ambiental , Peixes , Áreas Alagadas , Animais , Biodiversidade , Aves , Canadá , Ecologia , Ecossistema , Lagos , Estados Unidos , Qualidade da Água
3.
J Great Lakes Res ; 43(1): 108-120, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30713363

RESUMO

We compiled macroinvertebrate data collected from 1995 to 2014 from the St. Louis River Area of Concern (AOC) of Lake Superior. Our objective was to define depth-adjusted cutoff values for benthos condition classes to provide an analytical tool for quantifying progress toward achieving removal targets for the degraded benthos beneficial use impairment. We used quantile regression to model the limiting effect of depth on selected benthos metrics, including taxa richness, percent non-oligochaete individuals, combined percent Ephemeroptera, Trichoptera, and Odonata individuals, and density of ephemerid mayfly nymphs (Hexagenia). We created a scaled trimetric index from the first three metrics. Metric values above the 75th percentile quantile regression model prediction were defined as being in relatively excellent condition in the context of the degraded beneficial use impairment for that depth. We set the cutoff between good and fair condition as the 50th percentile model prediction, and we set the cutoff between fair and poor condition as the 25th percentile model prediction. We examined sampler type, geographic zone, and substrate type for confounding effects. Based on these analyses we combined data across sampler types and created separate models for each of three geographic zone. We used the resulting condition-class cutoff values to determine the relative benthic condition for three adjacent habitat restoration project areas. The depth-limited pattern of ephemerid abundance we observed in the St. Louis River AOC also occurred elsewhere in the Great Lakes. We provide tabulated model predictions for application of our depth-adjusted condition class cutoff values to new sample data.

4.
PLoS One ; 9(7): e101499, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25006811

RESUMO

Watershed-scale anthropogenic stressors have profound effects on aquatic communities. Although several functional traits of stream macroinvertebrates change predictably in response to land development and urbanization, little is known about macroinvertebrate functional responses in lakes. We assessed functional community structure, functional diversity (Rao's quadratic entropy) and voltinism in macroinvertebrate communities sampled across the full gradient of anthropogenic stress in Laurentian Great Lakes coastal wetlands. Functional diversity and voltinism significantly decreased with increasing development, whereas agriculture had smaller or non-significant effects. Functional community structure was affected by watershed-scale development, as demonstrated by an ordination analysis followed by regression. Because functional community structure affects energy flow and ecosystem function, and functional diversity is known to have important implications for ecosystem resilience to further environmental change, these results highlight the necessity of finding ways to remediate or at least ameliorate these effects.


Assuntos
Ephemeroptera , Odonatos , Animais , Biodiversidade , Cadeia Alimentar , Great Lakes Region , Dinâmica Populacional , Urbanização
5.
Environ Manage ; 39(5): 631-47, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17387547

RESUMO

Integrated, quantitative expressions of anthropogenic stress over large geographic regions can be valuable tools in environmental research and management. Despite the fundamental appeal of a regional approach, development of regional stress measures remains one of the most important current challenges in environmental science. Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.


Assuntos
Ecossistema , Agricultura , Animais , Aves , Poluição Ambiental , Peixes , Sistemas de Informação Geográfica , Great Lakes Region , Humanos , Densidade Demográfica , Análise de Componente Principal
6.
Environ Monit Assess ; 102(1-3): 41-65, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15869177

RESUMO

Understanding the relationship between human disturbance and ecological response is essential to the process of indicator development. For large-scale observational studies, sites should be selected across gradients of anthropogenic stress, but such gradients are often unknown for apopulation of sites prior to site selection. Stress data available from public sources can be used in a geographic information system (GIS) to partially characterize environmental conditions for large geographic areas without visiting the sites. We divided the U.S. Great Lakes coastal region into 762 units consisting of a shoreline reach and drainage-shed and then summarized over 200 environmental variables in seven categories for the units using a GIS. Redundancy within the categories of environmental variables was reduced using principal components analysis. Environmental strata were generated from cluster analysis using principal component scores as input. To protect against site selection bias, sites were selected in random order from clusters. The site selection process allowed us to exclude sites that were inaccessible and was shown to successfully distribute sites across the range of environmental variation in our GIS data. This design has broad applicability when the goal is to develop ecological indicators using observational data from large-scale surveys.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Animais , Análise por Conglomerados , Água Doce , Sistemas de Informação Geográfica , Great Lakes Region , Humanos , Análise de Componente Principal , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA