Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
2.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101981

RESUMO

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/classificação , Planeta Terra , Árvores/crescimento & desenvolvimento
4.
Glob Chang Biol ; 30(4): e17269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563238

RESUMO

Tree monocultures constitute an increasing fraction of the global tree cover and are the dominant tree-growing strategy of forest landscape restoration commitments. Their advantages to produce timber are well known, but their value for biodiversity is highly controversial and context dependent. Therefore, understanding whether, and in which conditions, they can harbor native species regeneration is crucial. Here, we conducted meta-analyses based on a global survey of the literature and on a database created with local, unpublished studies throughout Brazil to evaluate the regeneration potential of native species under tree monocultures and the way management influences this regeneration. Native woody species regeneration under tree monocultures harbors a substantial fraction of the diversity (on average 40% and 68% in the global and Brazilian surveys, respectively) and abundance (on average 25% and 60% in the global and Brazilian surveys, respectively) of regeneration observed in natural forests. Plantations with longer rotation lengths, composed of native tree species, and located adjacent to forest remnants harbor more species. Pine plantations harbor more native individuals than eucalypt plantations, and the abundance of regenerating trees is higher in sites with higher mean temperatures. Species-area curves revealed that the number of woody species under pine and eucalypt plantations in Brazil is 606 and 598 species, respectively, over an aggregated sampled area of ca. 12 ha. We highlight that the understory of tree monocultures can harbor a considerable diversity of regenerating native species at the landscape and regional scales, but this diversity strongly depends on management. Long-rotation length and favorable location are key factors for woody regeneration success under tropical tree monocultures. Therefore, tree monocultures can play a role in forest landscape restoration and conservation, but only if they are planned and managed for achieving this purpose.


Assuntos
Pinus , Árvores , Humanos , Florestas , Biodiversidade , Brasil , Ecossistema
6.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845017

RESUMO

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Assuntos
Conservação dos Recursos Naturais , Florestas , Modelos Biológicos , Clima Tropical
7.
Proc Natl Acad Sci U S A ; 117(51): 32799-32805, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288690

RESUMO

Declining biodiversity and ecosystem functions put many of nature's contributions to people at risk. We review and synthesize the scientific literature to assess 50-y global trends across a broad range of nature's contributions. We distinguish among trends in potential and realized contributions of nature, as well as environmental conditions and the impacts of changes in nature on human quality of life. We find declining trends in the potential for nature to contribute in the majority of material, nonmaterial, and regulating contributions assessed. However, while the realized production of regulating contributions has decreased, realized production of agricultural and many material commodities has increased. Environmental declines negatively affect quality of life, but social adaptation and the availability of substitutes partially offset this decline for some of nature's contributions. Adaptation and substitutes, however, are often imperfect and come at some cost. For many of the contributions of nature, we find differing trends across different countries and regions, income classes, and ethnic and social groups, reinforcing the argument for more consistent and equitable measurement.

8.
Glob Chang Biol ; 28(8): 2622-2638, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35007364

RESUMO

Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.


Assuntos
Secas , Xilema , Florestas , Filogenia , Folhas de Planta/fisiologia , Clima Tropical , Madeira
9.
Ecol Appl ; 32(1): e02472, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652865

RESUMO

Competition with invasive grasses is one of the most important drivers of tree planting failures, especially in tropical forests. A widely disseminated weeding approach has been glyphosate spraying, the most used herbicide globally in forestry and ecosystem restoration. However, glyphosate use in restoration is highly controversial and requires further studies to elucidate its effects on restoration processes and the environment. We evaluated the use of glyphosate in riparian forest restoration and its impacts on tree planting costs, weed control efficiency, planted seedling performance, herbaceous and woody species regeneration, soil bacteria, and environmental contamination, using mowing treatments as a reference and based on a controlled experiment established in the Brazilian Atlantic Forest. Glyphosate spraying reduced by one-half and one-third the accumulated aboveground biomass of, respectively, weeds in general and of the invasive grass Urochloa decumbens compared to mowing treatments, and it reduced the cost by half. The performance of planted tree seedlings was markedly favored by glyphosate spraying compared to mowing treatments, as expressed by improved seedling height (~twice higher), crown area (~5× higher), and basal area (~5× higher); the regeneration of both native woody and ruderal herbaceous plants were also enhanced. Neither glyphosate nor its metabolite Aminomethylphosphonic acid (AMPA) residues were detected in either water runoff or soil samples, but they were found at relatively high concentrations in the runoff sediments (from 1.32 to 24.75 mg/kg for glyphosate and from 1.75 to 76.13 mg/kg for AMPA). Soil bacteria communities differed before and after glyphosate spraying in comparison to mowing plots (without glyphosate). Glyphosate spraying was far more cost effective than mowing for controlling U. decumbens and greatly improved the performance of planted tree seedlings and natural regeneration, while not leaving residues in soil and water. However, the changes in the structure of bacterial communities and high concentration of glyphosate and AMPA residues in runoff sediments highlight the need for caution when using this herbicide in riparian buffers. We present alternatives for reducing glyphosate use and minimizing its risks in tree planting initiatives.


Assuntos
Ecossistema , Florestas , Glicina/análogos & derivados , Plantas Daninhas , Solo , Árvores , Glifosato
10.
Conserv Biol ; 36(3): e13842, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34705299

RESUMO

Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9-51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.


Predicción de la Recuperación de la Biodiversidad a Escala de Paisaje según la Regeneración Natural del Bosque Tropical Resumen La regeneración natural del bosque es una solución rentable para la recuperación de la biodiversidad basada en la naturaleza, sin embargo, los diferentes factores socioambientales pueden derivar en resultados variables. Cómo predecir la ubicación en donde la regeneración natural del bosque recuperará los niveles de biodiversidad, los cuales son un indicador del valor de la conservación y un suministro potencial de diferentes servicios ambientales, es un vacío de conocimiento importante en la planeación de la restauración forestal. Buscamos predecir y mapear la recuperación a escala de paisaje de la riqueza de especies y la abundancia total de vertebrados, invertebrados y plantas en bosques tropicales y subtropicales de segundo crecimiento para guiar la planeación de la restauración. Primero, realizamos un metaanálisis mundial para cuantificar la medida a la que se desvió la recuperación de la riqueza y la abundancia total de especies en los bosques de segundo crecimiento de los valores de biodiversidad en los bosques antiguos referenciales en el mismo paisaje. Después, utilizamos un algoritmo de aprendizaje automático y un conjunto integral de factores socioambientales para predecir espacialmente la desviación a escala de paisaje para después mapearla. Los modelos explicaron en promedio el 34% de la varianza observada en la recuperación (rango de 9-51%). La recuperación de la biodiversidad a escala de paisaje en los bosques de segundo crecimiento pudo predecirse espacialmente con base en los factores socioambientales del paisaje (demografía humana, uso y cobertura del suelo, alteraciones naturales y antropogénicas, productividad del ecosistema, tipo de topografía y de suelo); fue significativamente más alta para la riqueza de especies que para la abundancia total de vertebrados (desviación media pronosticada ajustada al rango de 0.09 versus 0.34) e invertebrados (0.2 versus 0.35) pero no para las plantas (las cuales mostraron una recuperación similar para ambas medidas [0.24 versus 0.25]); y tuvo una correlación positiva para la abundancia de especies de plantas y vertebrados (Pearson r =0.45, p=0.001). Nuestra estrategia puede ayudar a identificar los paisajes de bosques tropicales y subtropicales con un potencial alto para la recuperación de la biodiversidad por medio de la regeneración natural del bosque.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Florestas , Humanos , Invertebrados , Plantas , Solo , Clima Tropical
11.
Nature ; 530(7589): 211-4, 2016 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840632

RESUMO

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Carbono/metabolismo , Ciclo do Carbono , Sequestro de Carbono , Ecologia , Umidade , América Latina , Chuva , Fatores de Tempo , Árvores/metabolismo
12.
Glob Chang Biol ; 27(7): 1328-1348, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33494123

RESUMO

Urgent solutions to global climate change are needed. Ambitious tree-planting initiatives, many already underway, aim to sequester enormous quantities of carbon to partly compensate for anthropogenic CO2 emissions, which are a major cause of rising global temperatures. However, tree planting that is poorly planned and executed could actually increase CO2 emissions and have long-term, deleterious impacts on biodiversity, landscapes and livelihoods. Here, we highlight the main environmental risks of large-scale tree planting and propose 10 golden rules, based on some of the most recent ecological research, to implement forest ecosystem restoration that maximizes rates of both carbon sequestration and biodiversity recovery while improving livelihoods. These are as follows: (1) Protect existing forest first; (2) Work together (involving all stakeholders); (3) Aim to maximize biodiversity recovery to meet multiple goals; (4) Select appropriate areas for restoration; (5) Use natural regeneration wherever possible; (6) Select species to maximize biodiversity; (7) Use resilient plant material (with appropriate genetic variability and provenance); (8) Plan ahead for infrastructure, capacity and seed supply; (9) Learn by doing (using an adaptive management approach); and (10) Make it pay (ensuring the economic sustainability of the project). We focus on the design of long-term strategies to tackle the climate and biodiversity crises and support livelihood needs. We emphasize the role of local communities as sources of indigenous knowledge, and the benefits they could derive from successful reforestation that restores ecosystem functioning and delivers a diverse range of forest products and services. While there is no simple and universal recipe for forest restoration, it is crucial to build upon the currently growing public and private interest in this topic, to ensure interventions provide effective, long-term carbon sinks and maximize benefits for biodiversity and people.


Assuntos
Sequestro de Carbono , Ecossistema , Biodiversidade , Conservação dos Recursos Naturais , Florestas , Humanos , Árvores
14.
Ecol Appl ; 29(2): e01847, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30779867

RESUMO

Maximizing initial aboveground woody biomass (AGB) accumulation in order to obtain early payments for carbon stocking is essential for the financial viability of reforestation programs fostered by climate mitigation efforts. Intensive silviculture, i.e., silviculture traditionally used in commercial forestry to maximize productivity and gains, has recently been advocated as a promising approach to enhance AGB accumulation in restoration plantations. However, this approach may hamper natural forest regeneration and ecological succession due to high competition between colonizing plants and planted trees. We investigated the impacts of different silvicultural treatments applied to restoration plantations with 20 native tree species on AGB accumulation and spontaneous regeneration of native woody species in an experiment set up in the Atlantic Forest of Brazil. Intensive silviculture demonstrated a remarkable potential to enhance AGB accumulation in restoration plantations by increasing up to three times the AGB of tree stands (from ~25 to 75 Mg/ha in the 12th year). Intensive fertilization/weed control enhanced AGB accumulation, while higher tree density and the proportion of pioneers did not have a significant effect on AGB over the time. In spite of higher costs (cost increase of 13-19%), the cost-effectiveness for AGB accumulation of intensive silviculture was comparable to that of traditional silviculture applied to restoration (US$50-100/Mg AGB for 3 × 2 m spacing). Contrary to our expectations, we did not find a trade-off between AGB accumulation by planted trees and the spontaneous regeneration of tree species, since intensive silviculture enhanced the regeneration of both planted (total of 12 species) and colonizing woody species (total of 30 species) in the plantation understory. Specifically, a strong association was found between AGB stocks and the abundance and richness of colonizing species, a vast majority of which (90% of species and 95% of individuals) were dispersed by animals. We report a case of positive correlation between AGB stocking and woody species regeneration in the restoration of the Atlantic Forest. Fostering the establishment and maintenance of restoration tree plantations can, in some cases, be a win-win strategy for climate mitigation and biodiversity conservation in human-modified tropical landscapes.


Assuntos
Árvores , Clima Tropical , Biomassa , Brasil , Florestas
15.
Ecol Appl ; 29(6): e01952, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31206818

RESUMO

Assessing the persistent impacts of fragmentation on aboveground structure of tropical forests is essential to understanding the consequences of land use change for carbon storage and other ecosystem functions. We investigated the influence of edge distance and fragment size on canopy structure, aboveground woody biomass (AGB), and AGB turnover in the Biological Dynamics of Forest Fragments Project (BDFFP) in central Amazon, Brazil, after 22+ yr of fragment isolation, by combining canopy variables collected with portable canopy profiling lidar and airborne laser scanning surveys with long-term forest inventories. Forest height decreased by 30% at edges of large fragments (>10 ha) and interiors of small fragments (<3 ha). In larger fragments, canopy height was reduced up to 40 m from edges. Leaf area density profiles differed near edges: the density of understory vegetation was higher and midstory vegetation lower, consistent with canopy reorganization via increased regeneration of pioneers following post-fragmentation mortality of large trees. However, canopy openness and leaf area index remained similar to control plots throughout fragments, while canopy spatial heterogeneity was generally lower at edges. AGB stocks and fluxes were positively related to canopy height and negatively related to spatial heterogeneity. Other forest structure variables typically used to assess the ecological impacts of fragmentation (basal area, density of individuals, and density of pioneer trees) were also related to lidar-derived canopy surface variables. Canopy reorganization through the replacement of edge-sensitive species by disturbance-tolerant ones may have mitigated the biomass loss effects due to fragmentation observed in the earlier years of BDFFP. Lidar technology offered novel insights and observational scales for analysis of the ecological impacts of fragmentation on forest structure and function, specifically aboveground biomass storage.


Assuntos
Ecossistema , Floresta Úmida , Brasil , Florestas , Árvores , Clima Tropical
16.
Ecol Appl ; 28(2): 373-384, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29171902

RESUMO

Mixed tree plantings and natural regeneration are the main restoration approaches for recovering tropical forests worldwide. Despite substantial differences in implementation costs between these methods, little is known regarding how they differ in terms of ecological outcomes, which is key information for guiding decision making and cost-effective restoration planning. Here, we compared the early ecological outcomes of natural regeneration and tree plantations for restoring the Brazilian Atlantic Forest in agricultural landscapes. We assessed and compared vegetation structure and composition in young (7-20 yr old) mixed tree plantings (PL), second-growth tropical forests established on former pastures (SGp), on former Eucalyptus spp. plantations (SGe), and in old-growth reference forests (Ref). We sampled trees with diameter at breast height (DBH) 1-5 cm (saplings) and trees at DBH > 5 cm (trees) in a total of 32 20 × 45 m plots established in these landscapes. Overall, the ecological outcomes of natural regeneration and restoration plantations were markedly different. SGe forests showed higher abundance of large (DBH > 20 cm) nonnative species, of which 98% were resprouting Eucalyptus trees, than SGp and PL, and higher total aboveground biomass; however, aboveground biomass of native species was higher in PL than in SGe. PL forests had lower abundance of native saplings and lianas than both naturally established second-growth forests, and lower proportion of animal dispersed saplings than SGe, probably due to higher isolation from native forest remnants. Rarefied species richness of trees was lower in SGp, intermediate in SGe and Ref and higher in PL, whereas rarefied species richness of saplings was higher in SG than in Ref. Species composition differed considerably among regeneration types. Although these forests are inevitably bound to specific landscape contexts and may present varying outcomes as they develop through longer time frames, the ecological particularities of forests established through different restoration approaches indicate that naturally established forests may not show similar outcomes to mixed tree plantings. The results of this study underscore the importance that restoration decisions need to be based on more robust expectations of outcomes that allow for a better analysis of the cost-effectiveness of different restoration approaches before scaling-up forest restoration in the tropics.


Assuntos
Recuperação e Remediação Ambiental , Florestas , Agricultura , Biodiversidade , Brasil , Clima Tropical
17.
Conserv Biol ; 32(3): 525-534, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29532979

RESUMO

New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration.


Assuntos
Conservação dos Recursos Naturais , Florestas , Computadores , Coleta de Dados , Tomada de Decisões
18.
Biol Rev Camb Philos Soc ; 99(1): 295-312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37813383

RESUMO

Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields. This study aims to identify the challenges and opportunities for enhancing forest restoration in both urban and rural systems by reviewing the scientific evidence, engaging with key stakeholders and using an urban-rural forest restoration framework. Using the Society for Ecological Restoration's International Principles as discussion topics, we highlight aspects of convergence and divergence between the two fields to broaden our understanding of forest restoration and promote integrative management approaches to address future forest conditions. Our findings reveal that urban and rural forest restoration have convergent and divergent aspects. We emphasise the importance of tailoring goals and objectives to specific contexts and the need to design different institutions and incentives based on the social and ecological needs and goals of stakeholders in different regions. Additionally, we discuss the challenges of achieving high levels of ecological restoration and the need to go beyond traditional ecology to plan, implement, monitor, and adaptively manage restored forests. We suggest that rivers and watersheds could serve as a common ground linking rural and urban landscapes and that forest restoration could interact with other environmental protection measures. We note the potential for expanding the creative vision associated with increasing tree-containing environments in cities to generate more diverse and resilient forest restoration outcomes in rural settings. This study underscores the value of integrative management approaches in addressing future forest conditions across the urban-rural continuum. Our framework provides valuable insights for policymakers, researchers, and decision-makers to advance the field of forest restoration and address the challenges of restoration across the urban-rural continuum. The rural-urban interface serves as a convergence point for forest restoration, and both urban and rural fields can benefit from each other's expertise.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores , Rios , Ecossistema
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210088, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373914

RESUMO

Forest restoration has been proposed as a scalable nature-based solution to achieve global environmental and socio-economic outcomes and is central to many policy initiatives, such as the Bonn Challenge. Restored forests contain appreciable biodiversity, improve habitat connectivity and sequester carbon. Incentive mechanisms (e.g. payments for ecosystem services and allocation of management rights) have been a focus of forest restoration efforts for decades. Yet, there is still little understanding of their role in promoting restoration success. We conducted a systematic literature review to investigate how incentive mechanisms are used to promote forest restoration, outcomes, and the biophysical and socio-economic factors that influence implementation and program success. We found that socio-economic factors, such as governance, monitoring systems and the experience and beliefs of participants, dominate whether or not an incentive mechanism is successful. We found that approximately half of the studies report both positive ecological and socio-economic outcomes. However, reported adverse outcomes were more commonly socio-economic than ecological. Our results reveal that achieving forest restoration at a sufficient scale to meet international commitments will require stronger assessment and management of socio-economic factors that enable or constrain the success of incentive mechanisms. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Motivação , Humanos , Florestas , Biodiversidade , Conservação dos Recursos Naturais
20.
Biol Rev Camb Philos Soc ; 98(2): 662-676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36453621

RESUMO

Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.


Assuntos
Ecossistema , Florestas , Humanos , Árvores , Clima Tropical , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA