Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Cell ; 161(5): 1012-1025, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959774

RESUMO

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.


Assuntos
Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Animais , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Humanos , Deformidades Congênitas dos Membros/genética , Camundongos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptor EphA4/genética
2.
Genome Res ; 32(7): 1242-1253, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710300

RESUMO

Structural variants (SVs) can affect protein-coding sequences as well as gene regulatory elements. However, SVs disrupting protein-coding sequences that also function as cis-regulatory elements remain largely uncharacterized. Here, we show that craniosynostosis patients with SVs containing the histone deacetylase 9 (HDAC9) protein-coding sequence are associated with disruption of TWIST1 regulatory elements that reside within the HDAC9 sequence. Based on SVs within the HDAC9-TWIST1 locus, we defined the 3'-HDAC9 sequence as a critical TWIST1 regulatory region, encompassing craniofacial TWIST1 enhancers and CTCF sites. Deletions of either Twist1 enhancers (eTw5-7Δ/Δ) or CTCF site (CTCF-5Δ/Δ) within the Hdac9 protein-coding sequence led to decreased Twist1 expression and altered anterior/posterior limb expression patterns of SHH pathway genes. This decreased Twist1 expression results in a smaller sized and asymmetric skull and polydactyly that resembles Twist1+/- mouse phenotype. Chromatin conformation analysis revealed that the Twist1 promoter interacts with Hdac9 sequences that encompass Twist1 enhancers and a CTCF site, and that interactions depended on the presence of both regulatory regions. Finally, a large inversion of the entire Hdac9 sequence (Hdac9 INV/+) in mice that does not disrupt Hdac9 expression but repositions Twist1 regulatory elements showed decreased Twist1 expression and led to a craniosynostosis-like phenotype and polydactyly. Thus, our study elucidates essential components of TWIST1 transcriptional machinery that reside within the HDAC9 sequence. It suggests that SVs encompassing protein-coding sequences could lead to a phenotype that is not attributed to its protein function but rather to a disruption of the transcriptional regulation of a nearby gene.


Assuntos
Craniossinostoses , Histona Desacetilases , Proteínas Nucleares , Polidactilia , Proteínas Repressoras , Proteína 1 Relacionada a Twist , Animais , Craniossinostoses/genética , Regulação da Expressão Gênica , Histona Desacetilases/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Fenótipo , Polidactilia/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética
3.
Hum Mol Genet ; 31(15): 2535-2547, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35220430

RESUMO

Epidermal development and maintenance are finely regulated events requiring a strict balance between proliferation and differentiation. Alterations in these processes give rise to human disorders such as cancer or syndromes with skin and annexes defects, known as ectodermal dysplasias (EDs). Here, we studied the functional effects of two novel receptor-interacting protein kinase 4 (RIPK4) missense mutations identified in siblings with an autosomal recessive ED with cutaneous syndactyly, palmoplantar hyperkeratosis and orofacial synechiae. Clinical overlap with distinct EDs caused by mutations in transcription factors (i.e. p63 and interferon regulatory factor 6, IRF6) or nectin adhesion molecules was noticed. Impaired activity of the RIPK4 kinase resulted both in altered epithelial differentiation and defective cell adhesion. We showed that mutant RIPK4 resulted in loss of PVRL4/nectin-4 expression in patient epidermis and primary keratinocytes, and demonstrated that PVRL4 is transcriptionally regulated by IRF6, a RIPK4 phosphorylation target. In addition, defective RIPK4 altered desmosome morphology through modulation of plakophilin-1 and desmoplakin. In conclusion, this work implicates RIPK4 kinase function in the p63-IRF6 regulatory loop that controls the proliferation/differentiation switch and cell adhesion, with implications in ectodermal development and cancer.


Assuntos
Displasia Ectodérmica , Fatores Reguladores de Interferon , Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Displasia Ectodérmica/metabolismo , Homeostase , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Queratinócitos/metabolismo , Nectinas , Proteínas Serina-Treonina Quinases
4.
Clin Genet ; 105(4): 355-363, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339844

RESUMO

The genetic risk of chronic diseases represents a complex medical setting in which individuals need to adapt to health conditions that manage daily living towards to healthy behaviours. This exploratory review focused on psychological counselling for genetic risk diagnosis. This study aimed to address the psychological management of the impact of genetic risk on chronic diseases. We performed a systematic search of MEDLINE via PubMed, Embase, Web of Science, PsycINFO and Scopus for articles from May 2012 to August 2023. A descriptive analysis of the characteristics of the included studies was conducted. Based on the exclusion/inclusion criteria, the literature search yielded 250 studies. Seventeen full texts were assessed for eligibility and 207 articles were excluded. Observational (n = 15) and randomised clinical trials (n = 2) were examined. Most studies have been conducted on oncological diagnoses; the emotional dimensions examined have been worry, depression, anxiety and stress in most diseases. Psychological measures are based on self-reports and questionnaires; few studies have investigated the connections between quality of life, psychological traits and emotional dimensions. The complexity of clinics and from daily diagnostic and treatment practices to the everyday experience of those living with the risk of disease might be addressed in counselling settings to improve quality of life in genetic risk, increasing mental adaptation to tailored chronic conditions. Thus, the empowerment of communication of genetic risk information should be part of the general trend towards personalised medicine.


Assuntos
Psicoterapia , Qualidade de Vida , Humanos , Psicoterapia/métodos , Ansiedade/terapia , Doença Crônica , Aconselhamento
5.
Clin Genet ; 106(5): 574-584, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38988293

RESUMO

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.


Assuntos
Alelos , Anquirinas , Genótipo , Deficiência Intelectual , Fenótipo , Humanos , Anquirinas/genética , Masculino , Feminino , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Pré-Escolar , Adolescente , Transtorno do Espectro Autista/genética , Mutação/genética , Adulto , Estudos de Associação Genética , Predisposição Genética para Doença , Transtorno do Deficit de Atenção com Hiperatividade/genética , Epilepsia/genética , Lactente , Transtornos do Desenvolvimento da Linguagem/genética
6.
Epilepsia ; 64 Suppl 1: S14-S21, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37021642

RESUMO

Familial adult myoclonus epilepsy (FAME) is a genetic epilepsy syndrome that for many years has resisted understanding of its underlying molecular cause. This review covers the history of FAME genetic studies worldwide, starting with linkage and culminating in the discovery of noncoding TTTTA and inserted TTTCA pentanucleotide repeat expansions within six different genes to date (SAMD12, STARD7, MARCHF6, YEATS2, TNRC6A, and RAPGEF2). FAME occurs worldwide; however, repeat expansions in particular genes have regional geographical distributions. FAME repeat expansions are dynamic in nature, changing in length and structure within germline and somatic tissues. This variation poses challenges for molecular diagnosis such that molecular methods used to identify FAME repeat expansions typically require a trade-off between cost and efficiency. A rigorous evaluation of the sensitivity and specificity of each molecular approach remains to be performed. The origin of FAME repeat expansions and the genetic and environmental factors that modulate repeat variability are not well defined. Longer repeats and particular arrangements of the TTTTA and TTTCA motifs within an expansion are correlated with earlier onset and increased severity of disease. Other factors such as maternal or paternal inheritance, parental age, and repeat length alone have been suggested to influence repeat variation; however, further research is required to confirm this. The history of FAME genetics to the present is a chronicle of perseverance and predominantly collaborative efforts that yielded a successful outcome. The discovery of FAME repeats will spark progress toward a deeper understanding of the molecular pathogenesis of FAME, discovery of new loci, and development of cell and animal models.


Assuntos
Epilepsias Mioclônicas , Humanos , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Linhagem , Pesquisa
7.
PLoS Pathog ; 16(10): e1008253, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031460

RESUMO

Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash.


Assuntos
Derme/virologia , Epiderme/virologia , Queratinócitos/virologia , Linfócitos/virologia , Sarampo/virologia , Células Mieloides/virologia , Pele/virologia , Animais , Células Cultivadas , Derme/patologia , Epiderme/patologia , Humanos , Queratinócitos/patologia , Linfócitos/patologia , Macaca fascicularis , Sarampo/patologia , Vírus do Sarampo/isolamento & purificação , Células Mieloides/patologia , Pele/patologia
8.
Nature ; 538(7624): 265-269, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27706140

RESUMO

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Variações do Número de Cópias de DNA/genética , Doença/genética , Duplicação Gênica/genética , Animais , DNA/genética , Fácies , Feminino , Fibroblastos , Dedos/anormalidades , Deformidades Congênitas do Pé/genética , Expressão Gênica , Genômica , Deformidades Congênitas da Mão/genética , Masculino , Camundongos , Fenótipo , Fatores de Transcrição SOX9/genética
10.
Hum Mol Genet ; 28(13): 2133-2142, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30806661

RESUMO

Hereditary multiple osteochondromas (HMO) is a rare autosomal dominant skeletal disorder, caused by heterozygous variants in either EXT1 or EXT2, which encode proteins involved in the biogenesis of heparan sulphate. Pathogenesis and genotype-phenotype correlations remain poorly understood. We studied 114 HMO families (158 affected individuals) with causative EXT1 or EXT2 variants identified by Sanger sequencing, or multiplex ligation-dependent probe amplification and qPCR. Eighty-seven disease-causative variants (55 novel and 32 known) were identified including frameshift (42%), nonsense (32%), missense (11%), splicing (10%) variants and genomic rearrangements (5%). Informative clinical features were available for 42 EXT1 and 27 EXT2 subjects. Osteochondromas were more frequent in EXT1 as compared to EXT2 patients. Anatomical distribution of lesions showed significant differences based on causative gene. Microscopy analysis for selected EXT1 and EXT2 variants verified that EXT1 and EXT2 mutants failed to co-localize each other and loss Golgi localization by surrounding the nucleus and/or assuming a diffuse intracellular distribution. In a cell viability study, cells expressing EXT1 and EXT2 mutants proliferated more slowly than cells expressing wild-type proteins. This confirms the physiological relevance of EXT1 and EXT2 Golgi co-localization and the key role of these proteins in the cell cycle. Taken together, our data expand genotype-phenotype correlations, offer further insights in the pathogenesis of HMO and open the path to future therapies.


Assuntos
Exostose Múltipla Hereditária/genética , N-Acetilglucosaminiltransferases/genética , Proliferação de Células , Sobrevivência Celular , Feminino , Estudos de Associação Genética , Complexo de Golgi/enzimologia , Células HEK293 , Humanos , Masculino , Mutação , N-Acetilglucosaminiltransferases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA