Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 49(2): 693-704, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33843967

RESUMO

Leukocytes continuously circulate our body through the blood and lymphatic vessels. To survey invaders or abnormalities and defend our body against them, blood-circulating leukocytes migrate from the blood vessels into the interstitial tissue space (leukocyte extravasation) and exit the interstitial tissue space through draining lymphatic vessels (leukocyte intravasation). In the process of leukocyte trafficking, leukocytes recognize and respond to multiple biophysical and biochemical cues in these vascular microenvironments to determine adequate migration and adhesion pathways. As leukocyte trafficking is an essential part of the immune system and is involved in numerous immune diseases and related immunotherapies, researchers have attempted to identify the key biophysical and biochemical factors that might be responsible for leukocyte migration, adhesion, and trafficking. Although intravital live imaging of in vivo animal models has been remarkably advanced and utilized, bioengineered in vitro models that recapitulate complicated in vivo vascular structure and microenvironments are needed to better understand leukocyte trafficking since these in vitro models better allow for spatiotemporal analyses of leukocyte behaviors, decoupling of interdependent biological factors, better controlling of experimental parameters, reproducible experiments, and quantitative cellular analyses. This review discusses bioengineered in vitro model systems that are developed to study leukocyte interactions with complex microenvironments of blood and lymphatic vessels. This review focuses on the emerging concepts and methods in generating relevant biophysical and biochemical cues. Finally, the review concludes with expert perspectives on the future research directions for investigating leukocyte and vascular biology using the in vitro models.


Assuntos
Bioengenharia/métodos , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Leucócitos/metabolismo , Modelos Biológicos , Animais , Membrana Basal/metabolismo , Movimento Celular/fisiologia , Humanos
2.
Sci Rep ; 10(1): 4544, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161326

RESUMO

Ex-vivo gene therapy using stem cells or T cells transduced by retroviral or lentiviral vectors has shown remarkable efficacy in the treatment of immunodeficiencies and cancer. However, the process is expensive, technically challenging, and not readily scalable to large patient populations, particularly in underdeveloped parts of the world. Direct in vivo gene therapy would avoid these issues, and such approaches with adeno-associated virus (AAV) vectors have been shown to be safe and efficacious in clinical trials for diseases affecting differentiated tissues such as the liver and CNS. However, the ability to transduce lymphocytes with AAV in vivo after systemic delivery has not been carefully explored. Here, we show that both standard and exosome-associated preparations of AAV8 vectors can effectively transduce a variety of immune cell populations including CD4+ T cells, CD8+ T cells, B cells, macrophages, and dendritic cells after systemic delivery in mice. We provide direct evidence of T cell transduction through the detection of AAV genomes and transgene mRNA, and show that intracellular and transmembrane proteins can be expressed. These findings establish the feasibility of AAV-mediated in vivo gene delivery to immune cells which will facilitate both basic and applied research towards the goal of direct in vivo gene immunotherapies.


Assuntos
Dependovirus/genética , Exossomos/genética , Técnicas de Transferência de Genes , Engenharia Genética , Vetores Genéticos/administração & dosagem , Linfócitos T/metabolismo , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/citologia , Linfócitos T/virologia , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA