Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Am Soc Nephrol ; 35(2): 149-165, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062563

RESUMO

SIGNIFICANCE STATEMENT: Renal fibrosis is a common pathologic process of progressive CKD. We have provided strong evidence that PGI 2 is an important component in the kidney injury/repairing process by reducing fibrosis and protecting renal function from declining. In our study, administration of a PGI 2 analog or selective PTGIR agonist after the acute injury ameliorated renal fibrosis. Our findings provide new insights into the role of PGI 2 in kidney biology and suggest that targeting PGI 2 /PTGIR may be a potential therapeutic strategy for CKD. BACKGROUND: Prostanoids have been demonstrated to be important modulators to maintain tissue homeostasis in response to physiologic or pathophysiologic stress. Prostacyclin (PGI 2 ) is a member of prostanoids. While limited studies have shown that PGI 2 is involved in the tissue injury/repairing process, its role in renal fibrosis and CKD progression requires further investigation. METHODS: Prostacyclin synthase ( Ptgis )-deficient mice, prostaglandin I 2 receptor ( Ptgir )-deficient mice, and an oral PGI 2 analog and selective PTGIR agonist were used to examine the role of PGI 2 in renal fibrosis in mouse models. We also analyzed the single-cell RNA-Seq data to examine the PTGIR -expressing cells in the kidneys of patients with CKD. RESULTS: Increased PTGIS expression has been observed in fibrotic kidneys in both humans and mice. Deletion of the PTGIS gene aggravated renal fibrosis and decline of renal function in murine models. A PGI 2 analog or PTGIR agonist that was administered after the acute injury ameliorated renal fibrosis. PTGIR, the PGI 2 receptor, deficiency blunted the protective effect of the PGI 2 analog. Fibroblasts and myofibroblasts were the major cell types expressing PTGIR in the kidneys of patients with CKD. Deletion of PTGIR in collagen-producing fibroblastic cells aggravated renal fibrosis. The protective effect of PGI 2 was associated with the inhibition of fibroblast activation through PTGIR-mediated signaling. CONCLUSIONS: PGI 2 is an important component in the kidney injury/repairing process by preventing the overactivation of fibroblasts during the repairing process and protecting the kidney from fibrosis and decline of renal function. Our findings suggest that PGI 2 /PTGIR is a potential therapeutic target for CKD.


Assuntos
Epoprostenol , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Epoprostenol/farmacologia , Epoprostenol/metabolismo , Prostaglandinas I , Rim/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Fibroblastos/metabolismo , Fibrose
2.
Kidney Int ; 105(6): 1263-1278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286178

RESUMO

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.


Assuntos
Progressão da Doença , Taxa de Filtração Glomerular , Rim , Medicina de Precisão , Insuficiência Renal Crônica , Transcriptoma , Humanos , Medicina de Precisão/métodos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/fisiopatologia , Pessoa de Meia-Idade , Feminino , Masculino , Rim/patologia , Rim/fisiopatologia , Idoso , Biópsia , Adulto , Redes Neurais de Computação , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Aprendizado de Máquina não Supervisionado
3.
Prostaglandins Other Lipid Mediat ; 159: 106621, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131551

RESUMO

Diabetic nephropathy (DN) is a major microvascular complication of diabetes and the leading cause of mortality in diabetic patients. Cyclooxygenase (COX) and COX-derived prostanoids are documented to participate in the pathogenesis of diabetic nephropathy. Herein, we found an increased COX2 expression level in diabetic kidneys of STZ-induced DBA mice. The COX2 inhibitor significantly attenuated albuminuria and histological lesions, accompanied by up-regulation of the renal angiopoietin-1/tie-2 system. This finding is consistent with the presence of an angiogenic signature in endothelial cells during the development of DN. Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, and its receptor EP4 is expressed in the glomerulus, as determined by in situ hybridization. To test the hypothesis that diabetes-associated COX2 overexpression induces renal PGE2 production and endothelial dysfunction by activating glomerular EP4 receptors, the effect of an EP4 antagonist on Akita/DBA mice was investigated. Our results showed that blockade of EP4 receptor significantly reduced albuminuria in diabetic mice. Owing to the established adverse effect of COX2 inhibitors, our study provided new insight into meaningful renal benefits for diabetic nephropathy by targeting the EP4 receptor.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Albuminúria , Animais , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Diabetes Mellitus Experimental/complicações , Dinoprostona , Células Endoteliais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Prostaglandinas , Receptores de Prostaglandina E Subtipo EP4
4.
Int J Med Sci ; 16(1): 180-188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662341

RESUMO

Aim: Autosomal dominant polycystic kidney disease is one of the most common genetic renal diseases. Cyclooxygenase plays an important role in epithelial cell proliferation and may contribute to the mechanisms underlying cyst formation. The aim of the present study was to evaluate the role of cyclooxygenase inhibition in the cyst progression in polycystic kidney disease. Method: Pkd2WS25/- mice, a murine model which harbors a compound cis-heterozygous mutation of the Pkd2 gene were used. Cyclooxygenase expression was assessed in both human and murine kidney specimens. Pkd2WS25/- mice were treated with Sulindac (a nonselective cyclooxygenase inhibitor) or vehicle for 8 months starting at three weeks age, and then renal cyst burden was assessed by kidney weight and volume. Results: Cyclooxygenase-2 expression was up-regulated compared to control kidneys as shown by RNase protection in human polycystic kidneys and immunoblot in mouse Pkd2WS25/- kidneys. Cyclooxygenase-2 expression was up-regulated in the renal interstitium as well as focal areas of the cystic epithelium (p<0.05). Basal Cyclooxygenase-1 levels were unchanged in both immunohistochemistry and real-time PCR. Administration of Sulindac to Pkd2WS25/- mice and to control mice for 8 months resulted in reduced kidney weights and volume in cystic mice. Renal function and electrolytes were not significantly different between groups. Conclusion: Thus treatment of a murine model of polycystic kidney disease with Sulindac results in decreased kidney cyst burden. These findings provide additional implications for the use of Cyclooxygenase inhibition as treatment to slow the progression of cyst burden in patients with polycystic kidney disease.


Assuntos
Inibidores de Ciclo-Oxigenase/uso terapêutico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Sulindaco/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Cistos/metabolismo , Cistos/fisiopatologia , Dinoprostona/biossíntese , Modelos Animais de Doenças , Progressão da Doença , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular , Mutação , Prostaglandina-E Sintases/biossíntese , Prostaglandina-Endoperóxido Sintases/biossíntese , Prostaglandinas/biossíntese , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
5.
J Am Soc Nephrol ; 34(6): 935-936, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093623
6.
J Am Soc Nephrol ; 29(2): 477-491, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29061652

RESUMO

Progress in research and developing therapeutics to prevent diabetic kidney disease (DKD) is limited by a lack of animal models exhibiting progressive kidney disease. Chronic hypertension, a driving factor of disease progression in human patients, is lacking in most available models of diabetes. We hypothesized that superimposition of hypertension on diabetic mouse models would accelerate DKD. To test this possibility, we induced persistent hypertension in three mouse models of type 1 diabetes and two models of type 2 diabetes by adeno-associated virus delivery of renin (ReninAAV). Compared with LacZAAV-treated counterparts, ReninAAV-treated type 1 diabetic Akita/129 mice exhibited a substantial increase in albumin-to-creatinine ratio (ACR) and serum creatinine level and more severe renal lesions. In type 2 models of diabetes (C57BKLS db/db and BTBR ob/ob mice), compared with LacZAAV, ReninAAV induced significant elevations in ACR and increased the incidence and severity of histopathologic findings, with increased serum creatinine detected only in the ReninAAV-treated db/db mice. The uninephrectomized ReninAAV db/db model was the most progressive model examined and further characterized. In this model, separate treatment of hyperglycemia with rosiglitazone or hypertension with lisinopril partially reduced ACR, consistent with independent contributions of these disorders to renal disease. Microarray analysis and comparison with human DKD showed common pathways affected in human disease and this model. These results identify novel models of progressive DKD that provide researchers with a facile and reliable method to study disease pathogenesis and support the development of therapeutics.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Hipertensão/complicações , Renina/genética , Animais , Anti-Hipertensivos/uso terapêutico , Creatinina/sangue , Dependovirus , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Progressão da Doença , Feminino , Vetores Genéticos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipoglicemiantes/uso terapêutico , Janus Quinases/metabolismo , Óperon Lac/genética , Lisinopril/uso terapêutico , Masculino , Camundongos , Nefrectomia , Óxido Nítrico Sintase Tipo III/genética , Rosiglitazona/uso terapêutico , Fatores de Transcrição STAT/metabolismo , Albumina Sérica/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais
7.
Kidney Int ; 93(5): 1198-1206, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29398132

RESUMO

To identify determinants of early progressive renal decline in type 2 diabetes a range of markers was studied in 1032 patients enrolled into the 2nd Joslin Kidney Study. eGFR slopes estimated from serial measurements of serum creatinine during 5-12 years of follow-up were used to define early renal decline. At enrollment, all patients had normal eGFR, 58% had normoalbuminuria and 42% had albuminuria. Early renal decline developed in 6% and in 18% patients, respectively. As determinants, we examined baseline values of clinical characteristics, circulating markers: TNFR1, KIM-1, and FGF23, and urinary markers: albumin, KIM-1, NGAL, MCP-1, EGF (all normalized to urinary creatinine) and the ratio of EGF to MCP-1. In univariate analysis, all plasma and urinary markers were significantly associated with risk of early renal decline. When analyzed together, systolic blood pressure, TNFR1, KIM-1, the albumin to creatinine ratio, and the EGF/MCP-1 ratio remained significant with the latter having the strongest effect. Integration of these markers into a multi-marker prognostic test resulted in a significant improvement of discriminatory performance of risk prediction of early renal decline, compared with the albumin to creatinine ratio and systolic blood pressure alone. However, the positive predictive value was only 50% in albuminuric patients. Thus, markers in plasma and urine indicate that the early progressive renal decline in Type 2 diabetes has multiple determinants with strong evidence for involvement of tubular damage. However, new, more informative markers are needed to develop a better prognostic test for such decline that can be used in a clinical setting.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatias Diabéticas/etiologia , Adulto , Albuminúria/diagnóstico , Albuminúria/etiologia , Albuminúria/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Pressão Sanguínea , Quimiocina CCL2/urina , Creatinina/urina , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/urina , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Diagnóstico Precoce , Fator de Crescimento Epidérmico/urina , Feminino , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular , Receptor Celular 1 do Vírus da Hepatite A/sangue , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Medição de Risco , Fatores de Risco , Fatores de Tempo
8.
Toxicol Pathol ; 46(8): 991-998, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30392455

RESUMO

The ReninAAV db/db uNx model of diabetic kidney disease (DKD) exhibits hallmarks of advanced human disease, including progressive elevations in albuminuria and serum creatinine, loss of glomerular filtration rate, and pathological changes. Microarray analysis of renal transcriptome changes were more similar to human DKD when compared to db/db eNOS-/- model. The model responds to treatment with arterial pressure lowering (lisinopril) or glycemic control (rosiglitazone) at early stages of disease. We hypothesized the ReninAAV db/db uNx model with advanced disease would have residual disease after treatment with lisinopril, rosiglitazone, or combination of both. To test this, ReninAAV db/db uNx mice with advanced disease were treated with lisinopril, rosiglitazone, or combination of both for 10 weeks. All treatment groups showed significant lowering of urinary albumin to creatinine ratio compared to baseline; however, only combination group exhibited lowering of serum creatinine. Treatment improved renal pathological scores compared to baseline values with residual disease evident in all treatment groups when compared to db/m controls. Gene expression analysis by TaqMan supported pathological changes with increased fibrotic and inflammatory markers. The results further validate this model of DKD in which residual disease is present when treated with agents to lower arterial pressure and glycemic control.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Animais , Humanos , Camundongos , Camundongos Endogâmicos , Transcriptoma
9.
Am J Physiol Renal Physiol ; 312(6): F951-F962, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249836

RESUMO

Transforming growth factor-alpha (TGFA) has been shown to play a role in experimental chronic kidney disease associated with nephron reduction, while its role in diabetic kidney disease (DKD) is unknown. We show here that intrarenal TGFA mRNA expression, as well as urine and serum TGFA, are increased in human DKD. We used a TGFA neutralizing antibody to determine the role of TGFA in two models of renal disease, the remnant surgical reduction model and the uninephrectomized (uniNx) db/db DKD model. In addition, the contribution of TGFA to DKD progression was examined using an adeno-associated virus approach to increase circulating TGFA in experimental DKD. In vivo blockade of TGFA attenuated kidney disease progression in both nondiabetic 129S6 nephron reduction and Type 2 diabetic uniNx db/db models, whereas overexpression of TGFA in uniNx db/db model accelerated renal disease. Therapeutic activity of the TGFA antibody was enhanced with renin angiotensin system inhibition with further improvement in renal parameters. These findings suggest a pathologic contribution of TGFA in DKD and support the possibility that therapeutic administration of neutralizing antibodies could provide a novel treatment for the disease.


Assuntos
Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Idoso , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Pressão Sanguínea , Células Cultivadas , Dependovirus/genética , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Taxa de Filtração Glomerular , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Rim/cirurgia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Nefrectomia , Fosforilação , Sistema Renina-Angiotensina , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador alfa/antagonistas & inibidores , Fator de Crescimento Transformador alfa/deficiência , Fator de Crescimento Transformador alfa/genética
10.
Kidney Int ; 92(1): 258-266, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396115

RESUMO

Design of Phase III trials for diabetic nephropathy currently requires patients at a high risk of progression defined as within three years of a hard end point (end-stage renal disease, 40% loss of estimated glomerular filtration rate, or death). To improve the design of these trials, we used natural history data from the Joslin Kidney Studies of chronic kidney disease in patients with diabetes to develop an improved criterion to identify such patients. This included a training cohort of 279 patients with type 1 diabetes and 134 end points within three years, and a validation cohort of 221 patients with type 2 diabetes and 88 end points. Previous trials selected patients using clinical criteria for baseline urinary albumin-to-creatinine ratio and estimated glomerular filtration rate. Application of these criteria to our cohort data yielded sensitivities (detection of patients at risk) of 70-80% and prognostic values of only 52-63%. We applied classification and regression trees analysis to select from among all clinical characteristics and markers the optimal prognostic criterion that divided patients with type 1 diabetes according to risk. The optimal criterion was a serum tumor necrosis factor receptor 1 level over 4.3 ng/ml alone or 2.9-4.3 ng/ml with an albumin-to-creatinine ratio over 1900 mg/g. Remarkably, this criterion produced similar results in both type 1 and type 2 diabetic patients. Overall, sensitivity and prognostic value were high (72% and 81%, respectively). Thus, application of this criterion to enrollment in future clinical trials could reduce the sample size required to achieve adequate statistical power for detection of treatment benefits.


Assuntos
Ensaios Clínicos Fase III como Assunto/métodos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Determinação de Ponto Final , Taxa de Filtração Glomerular , Falência Renal Crônica/etiologia , Rim/fisiopatologia , Seleção de Pacientes , Adulto , Albuminúria/etiologia , Albuminúria/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Creatinina/urina , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/terapia , Progressão da Doença , Feminino , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo
11.
J Am Soc Nephrol ; 27(7): 1902-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27127187

RESUMO

Innovation in kidney diseases is not commensurate with the effect of these diseases on human health and mortality or innovation in other key therapeutic areas. A primary cause of the dearth in innovation is that kidney diseases disproportionately affect a demographic that is largely disenfranchised, lacking sufficient advocacy, public attention, and funding. A secondary and likely consequent cause is that the existing infrastructure supporting nephrology research pales in comparison with those for other internal medicine specialties, especially cardiology and oncology. Citing such inequities, however, is not enough. Changing the status quo will require a coordinated effort to identify and redress the existing deficits. Specifically, these deficits relate to the need to further develop and improve the following: understanding of the disease mechanisms and pathophysiology, patient engagement and activism, clinical trial infrastructure, and investigational clinical trial designs as well as coordinated efforts among critical stakeholders. This paper identifies potential solutions to these barriers, some of which are already underway through the Kidney Health Initiative. The Kidney Health Initiative is unique and will serve as a current and future platform from which to overcome these barriers to innovation in nephrology.


Assuntos
Pesquisa Biomédica , Nefropatias , Nefrologia , Pesquisa Biomédica/organização & administração , Ensaios Clínicos como Assunto , Humanos , Nefropatias/diagnóstico , Nefropatias/terapia , Terapias em Estudo
12.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R467-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108870

RESUMO

Mice provide a unique platform to dissect disease pathogenesis, with the availability of recombinant inbred strains and diverse genetically modified strains. Leveraging these reagents to elucidate the mechanisms of hypertensive tissue injury has been hindered by difficulty establishing persistent hypertension in these inbred lines. ANG II infusion provides relatively short-term activation of the renin-angiotensinogen system (RAS) with concomitant elevated arterial pressure. Longer-duration studies using renin transgenic mice are powerful models of chronic hypertension, yet are limited by the genetic background on which the transgene exists and the exposure throughout development. The present studies characterized hypertension produced by transduction with a renin-coding adeno-associated virus (ReninAAV). ReninAAV mice experienced elevated circulating renin with concurrent elevations in arterial pressure. Following a single injection of ReninAAV, arterial pressure increased on average +56 mmHg, an increase that persisted for at least 12 wk in three distinct and widely used strains of adult mice: 129/S6, C56BL/6, and DBA/2J. This was accomplished without surgical implantation of pumps or complex breeding and backcrossing. In addition, ReninAAV mice developed pathophysiological changes associated with chronic hypertension, including increased heart weight and albuminuria. Thus ReninAAV provides a unique tool to study the onset of and effects of persistent hypertension in diverse murine models. This model should facilitate our understanding of the pathogenesis of hypertensive injury.


Assuntos
Pressão Arterial , Dependovirus/metabolismo , Vetores Genéticos , Hipertensão/metabolismo , Sistema Renina-Angiotensina , Renina/biossíntese , Transdução Genética , Albuminúria/genética , Albuminúria/metabolismo , Animais , Pressão Arterial/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutação , Fenótipo , Renina/genética , Sistema Renina-Angiotensina/genética , Fatores de Tempo
13.
Pflugers Arch ; 466(2): 357-367, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23900806

RESUMO

High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Medula Renal/metabolismo , NF-kappa B/metabolismo , Cloreto de Sódio na Dieta/administração & dosagem , Animais , Benzamidas/farmacologia , Indução Enzimática/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sódio/urina
14.
J Pharmacol Exp Ther ; 349(2): 330-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24518034

RESUMO

At least seven distinct epidermal growth factor (EGF) ligands bind to and activate the EGF receptor (EGFR). This activation plays an important role in the embryo and in the maintenance of adult tissues. Importantly, pharmacologic EGFR inhibition also plays a critical role in the pathophysiology of diverse disease states, especially cancer. The roles of specific EGFR ligands are poorly defined in these disease states. Accumulating evidence suggests a role for transforming growth factor α (TGFα) in skin, lung, and kidney disease. To explore the role of Tgfa, we generated a monoclonal antibody (mAb41) that binds to and neutralizes human Tgfa with high affinity (KD = 36.5 pM). The antibody also binds human epiregulin (Ereg) (KD = 346.6 pM) and inhibits ligand induced myofibroblast cell proliferation (IC50 values of 0.52 and 1.12 nM for human Tgfa and Ereg, respectively). In vivo, a single administration of the antibody to pregnant mice (30 mg/kg s.c. at day 14 after plug) or weekly administration to neonate mice (20 mg/kg s.c. for 4 weeks) phenocopy Tgfa knockout mice with curly whiskers, stunted growth, and expansion of the hypertrophic zone of growth plate cartilage. Humanization of this monoclonal antibody to a human IgG4 antibody (LY3016859) enables clinical development. Importantly, administration of the humanized antibody to cynomolgus monkeys is absent of the skin toxicity observed with current EGFR inhibitors used clinically and no other pathologies were noted, indicating that neutralization of Tgfa could provide a relatively safe profile as it advances in clinical development.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Epirregulina , Humanos , Imunoglobulina G/imunologia , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Ligação Proteica , Fator de Crescimento Transformador alfa/genética
15.
Nephrol Dial Transplant ; 29(12): 2293-302, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25085239

RESUMO

BACKGROUND: Diabetic nephropathy imposes a substantial cardiovascular and renal burden contributing to both morbidity and excess mortality. Progression of chronic kidney disease (CKD) in diabetes mellitus is variable, and few biomarkers are available to predict progression accurately. Identification of novel predictive biomarkers may inform clinical care and assist in the design of clinical trials. We hypothesized that urinary and plasma protein biomarkers predict CKD progression independently of the known clinical markers such as albuminuria and estimated glomerular filtration rate (eGFR) in diabetic nephropathy. METHODS: We studied 67 US veterans with CKD due to type 2 diabetes mellitus and 20 age-matched controls (no CKD, hypertension or cardiovascular disease). After clinical evaluation and the collection of blood and urine specimens for 24 biomarkers, we followed subjects prospectively for the next 2-6 years. CKD progression was defined in three ways: (i) clinically by examining eGFR versus time plots for each individual (slope progression), (ii) progression to end-stage renal disease (ESRD) and (iii) a composite outcome of ESRD or death. RESULTS: Among 17 urinary and 7 plasma biomarkers evaluated, the relationship of the biomarkers with outcome was as follows: (i) for progression identified by eGFR plots, urinary C-terminal fibroblast growth factor (FGF)-23 emerged to have the strongest primary association (adjusted odds ratio [aOR] 2.08, P = 0.008); (ii) for ESRD, plasma vascular endothelial growth factor (VEGF) had an association (aOR: 1.44, P = 0.027) and (iii) for the composite outcome of death and ESRD, plasma C-terminal FGF-23 also had a robust direct association (aOR: 3.07, P = 0.008). CONCLUSION: The relationship of biomarkers with future progression of CKD is complex and depends in part on how CKD progression is defined. Biomarkers in the FGF-23 and VEGF-A pathways predicted patient progression independently of albuminuria levels in this patient cohort. Additional studies in other cohorts will help further validate this pilot study.


Assuntos
Biomarcadores/metabolismo , Nefropatias Diabéticas/metabolismo , Taxa de Filtração Glomerular/fisiologia , Proteínas/metabolismo , Insuficiência Renal Crônica/metabolismo , Idoso , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Feminino , Fator de Crescimento de Fibroblastos 23 , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prevalência , Prognóstico , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/fisiopatologia , Estados Unidos/epidemiologia
16.
J Neurosci ; 32(12): 4319-29, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22442093

RESUMO

Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E(2) (PGE(2)), a bioactive lipid derived from arachidonic acid, in repeated social defeat stress in mice. Repeated social defeat increased the PGE(2) level in the subcortical region of the brain, and mice lacking either COX-1, a prostaglandin synthase, or EP1, a PGE receptor, were impaired in induction of social avoidance by repeated social defeat. Given the reported action of EP1 that augments GABAergic inputs to midbrain dopamine neurons, we analyzed dopaminergic response upon social defeat. Analyses of c-Fos expression of VTA dopamine neurons and dopamine turnover in mPFC showed that mesocortical dopaminergic pathway is activated upon social defeat and attenuated with repetition of social defeat in wild-type mice. EP1 deficiency abolished such repeated stress-induced attenuation of mesocortical dopaminergic pathway. Blockade of dopamine D1-like receptor during social defeat restored social avoidance in EP1-deficient mice, suggesting that disinhibited dopaminergic response during social defeat blocks induction of social avoidance. Furthermore, mPFC dopaminergic lesion by local injection of 6-hydroxydopamine, which mimicked the action of EP1 during repeated stress, facilitated induction of social avoidance upon social defeat. Taken together, our data suggest that PGE(2)-EP1 signaling is critical for susceptibility to repeated social defeat stress in mice through attenuation of mesocortical dopaminergic pathway.


Assuntos
Dinoprostona/metabolismo , Dominação-Subordinação , Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico , Área Tegmentar Ventral/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Benzazepinas/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Corticosterona/sangue , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 2/deficiência , Inibidores de Ciclo-Oxigenase , Dinoprostona/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Antagonistas de Dopamina/farmacologia , Ácido Homovanílico/metabolismo , Relações Interpessoais , Aprendizagem em Labirinto , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Oxidopamina/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/lesões , Pirazóis/farmacologia , Receptores de Prostaglandina E/deficiência , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/prevenção & controle , Sulfonamidas/farmacologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos
17.
Arterioscler Thromb Vasc Biol ; 32(12): 3024-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065824

RESUMO

OBJECTIVE: The present studies aimed at elucidating the role of prostaglandin E(2) receptor subtype 3 (E-prostanoid [EP] 3) in regulating blood pressure. METHODS AND RESULTS: Mice bearing a genetic disruption of the EP3 gene (EP(3)(-/-)) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3(-/-) mice, whereas the reduction of blood pressure induced by prostaglandin E(2) was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (Ang II) was attenuated in EP3(-/-) mice. Ang II-induced vasoconstriction in mesenteric arteries decreased in EP3(-/-) group. In mesenteric arteries from wild-type mice, Ang II-induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished Ang II-induced phosphorylation of myosin light chain 20 and myosin phosphatase target subunit 1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells, Ang II-induced intracellular Ca(2+) increase was potentiated by EP3 agonist sulprostone but inhibited by DG-041. CONCLUSIONS: Activation of the EP3 receptor raises baseline blood pressure and contributes to Ang II-dependent hypertension at least partially via enhancing Ca(2+) sensitivity and intracellular calcium concentration in vascular smooth muscle cells. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP3/genética , Vasoconstrição/efeitos dos fármacos , Animais , Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Células Cultivadas , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Receptores de Prostaglandina E Subtipo EP3/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho , Vasoconstrição/fisiologia
18.
Genesis ; 50(9): 685-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22467476

RESUMO

Mice with endothelial nitric oxide synthase (eNOS) deletions have defined the crucial role of eNOS in vascular development, homeostasis, and pathology. However, cell specific eNOS function has not been determined, although an important role of eNOS has been suggested in multiple cell types. Here, we have generated a floxed eNOS allele in which exons 9-12, encoding the sites essential to eNOS activity, are flanked with loxP sites. Mice homozygous for the floxed allele showed normal eNOS protein levels and no overt phenotype. Conversely, homozygous mice with Cre-deleted alleles displayed truncated eNOS protein, lack of vascular NO production, and exhibited similar phenotype to eNOS knockout mice, including hypertension, low heart rate, and focal renal scarring. These findings demonstrate that the floxed allele is normal and it can be converted to a non-functional eNOS allele through Cre recombination. This mouse will allow time- and cell-specific eNOS deletion.


Assuntos
Alelos , Engenharia Genética/métodos , Óxido Nítrico Sintase Tipo III/genética , Animais , Pressão Sanguínea/genética , Células-Tronco Embrionárias , Endotélio/enzimologia , Éxons , Feminino , Deleção de Genes , Marcação de Genes , Frequência Cardíaca/genética , Homozigoto , Hipertensão/genética , Integrases , Rim/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Recombinação Genética
19.
Nat Med ; 11(8): 861-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16007095

RESUMO

Thiazolidinediones (TZDs) are widely used to treat type 2 diabetes mellitus; however, their use is complicated by systemic fluid retention. Along the nephron, the pharmacological target of TZDs, peroxisome proliferator-activated receptor-gamma (PPARgamma, encoded by Pparg), is most abundant in the collecting duct. Here we show that mice treated with TZDs experience early weight gain from increased total body water. Weight gain was blocked by the collecting duct-specific diuretic amiloride and was also prevented by deletion of Pparg from the collecting duct, using Pparg (flox/flox) mice. Deletion of collecting duct Pparg decreased renal Na(+) avidity and increased plasma aldosterone. Treating cultured collecting ducts with TZDs increased amiloride-sensitive Na(+) absorption and Scnn1g mRNA (encoding the epithelial Na(+) channel ENaCgamma) expression through a PPARgamma-dependent pathway. These studies identify Scnn1g as a PPARgamma target gene in the collecting duct. Activation of this pathway mediates fluid retention associated with TZDs, and suggests amiloride might provide a specific therapy.


Assuntos
Amilorida/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Néfrons/fisiologia , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia , Equilíbrio Hidroeletrolítico/fisiologia , Análise de Variância , Animais , Análise Química do Sangue , Líquidos Corporais/efeitos dos fármacos , Peso Corporal , Imunoprecipitação da Cromatina , Canais Epiteliais de Sódio , Marcação de Genes , Camundongos , Camundongos Transgênicos , Néfrons/efeitos dos fármacos , PPAR gama/genética , PPAR gama/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Tiazolidinedionas/efeitos adversos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
20.
Cell Metab ; 34(7): 1064-1078.e6, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35709763

RESUMO

Diabetic kidney disease (DKD) occurs in ∼40% of patients with diabetes and causes kidney failure, cardiovascular disease, and premature death. We analyzed the response of a murine DKD model to five treatment regimens using single-cell RNA sequencing (scRNA-seq). Our atlas of ∼1 million cells revealed a heterogeneous response of all kidney cell types both to DKD and its treatment. Both monotherapy and combination therapies targeted differing cell types and induced distinct and non-overlapping transcriptional changes. The early effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) on the S1 segment of the proximal tubule suggest that this drug class induces fasting mimicry and hypoxia responses. Diabetes downregulated the spliceosome regulator serine/arginine-rich splicing factor 7 (Srsf7) in proximal tubule that was specifically rescued by SGLT2i. In vitro proximal tubule knockdown of Srsf7 induced a pro-inflammatory phenotype, implicating alternative splicing as a driver of DKD and suggesting SGLT2i regulation of proximal tubule alternative splicing as a potential mechanism of action for this drug class.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA