Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38820234

RESUMO

Pulmonary fibrosis (PF) can be idiopathic or driven by a specific insult or disease process. Inflammation plays a role in the pathophysiology, the extent of which remains a longstanding topic of debate. More recently there has been increasing interest in a potential inciting role for aberrant lipid metabolism. Lipids are essential for the structure and function of all cell membranes but specifically in the lung for surfactant composition, intra and intercellular lipid mediators and lipofibroblasts. Clinically, there is evidence of increased lipid deposition in the subpleural space, and at a whole lung tissue level in PF. There is evidence of increased parenchymal lipid deposition and abnormal mediastinal fat shape on chest CT. A protective role for cholesterol lowering drugs including statins and ezetimibe has been described in PF. At a cellular level, fatty acid (FA), phospholipid (PL) and glucose metabolism are disordered, as is the production of lipid mediators. In this perspectives piece we put forward the argument that there is substantive clinical and biological evidence to support a role for aberrant lipid metabolism and lipid mediators in the pathogenesis of PF.

2.
J Lipid Res ; 65(2): 100496, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185217

RESUMO

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Assuntos
Proteinose Alveolar Pulmonar , Animais , Camundongos , Humanos , Proteinose Alveolar Pulmonar/tratamento farmacológico , Proteinose Alveolar Pulmonar/diagnóstico , Proteinose Alveolar Pulmonar/metabolismo , Macrófagos Alveolares , Pulmão/metabolismo , Macrófagos/metabolismo , Lipídeos
3.
Gene Ther ; 30(3-4): 236-244, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33028973

RESUMO

Naturally occurring adeno-associated virus (AAV) serotypes that bind to ligands such as AVB sepharose or heparin can be purified by affinity chromatography, which is a more efficient and scalable method than gradient ultracentrifugation. Wild-type AAV8 does not bind effectively to either of these molecules, which constitutes a barrier to using this vector when a high throughput design is required. Previously, AAV8 was engineered to contain a SPAKFA amino acid sequence to facilitate purification using AVB sepharose resin; however, in vivo studies were not conducted to examine whether these capsid mutations altered the transduction profile. To address this gap in knowledge, a mutant AAV8 capsid was engineered to bind to AVB sepharose and heparan sulfate (AAV8-AVB-HS), which efficiently bound to both affinity columns, resulting in elution yields of >80% of the total vector loaded compared to <5% for wild-type AAV8. However, in vivo comparison by intramuscular, intravenous, and intraperitoneal vector administration demonstrated a significant decrease in AAV8-AVB-HS transduction efficiency without alteration of the transduction profile. Therefore, although it is possible to engineer AAV capsids to bind various affinity ligands, the consequences associated with mutating surface exposed residues have the potential to negatively impact other vector characteristics including in vivo potency and production yield. This study demonstrates the importance of evaluating all aspects of vector performance when engineering AAV capsids.


Assuntos
Capsídeo , Heparina , Capsídeo/metabolismo , Sefarose/análise , Sefarose/metabolismo , Transdução Genética , Heparina/análise , Heparina/metabolismo , Vetores Genéticos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética
4.
Respirology ; 28(11): 1043-1052, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642207

RESUMO

BACKGROUND AND OBJECTIVE: There is increasing interest in the role of lipids in processes that modulate lung fibrosis with evidence of lipid deposition in idiopathic pulmonary fibrosis (IPF) histological specimens. The aim of this study was to identify measurable markers of pulmonary lipid that may have utility as IPF biomarkers. STUDY DESIGN AND METHODS: IPF and control lung biopsy specimens were analysed using a unbiased lipidomic approach. Pulmonary fat attenuation volume (PFAV) was assessed on chest CT images (CTPFAV ) with 3D semi-automated lung density software. Aerated lung was semi-automatically segmented and CTPFAV calculated using a Hounsfield-unit (-40 to -200HU) threshold range expressed as a percentage of total lung volume. CTPFAV was compared to pulmonary function, serum lipids and qualitative CT fibrosis scores. RESULTS: There was a significant increase in total lipid content on histological analysis of IPF lung tissue (23.16 nmol/mg) compared to controls (18.66 mol/mg, p = 0.0317). The median CTPFAV in IPF was higher than controls (1.34% vs. 0.72%, p < 0.001) and CTPFAV correlated significantly with DLCO% predicted (R2 = 0.356, p < 0.0001) and FVC% predicted (R2 = 0.407, p < 0.0001) in patients with IPF. CTPFAV correlated with CT features of fibrosis; higher CTPFAV was associated with >10% reticulation (1.6% vs. 0.94%, p = 0.0017) and >10% honeycombing (1.87% vs. 1.12%, p = 0.0003). CTPFAV showed no correlation with serum lipids. CONCLUSION: CTPFAV is an easily quantifiable non-invasive measure of pulmonary lipids. In this pilot study, CTPFAV correlates with pulmonary function and radiological features of IPF and could function as a potential biomarker for IPF disease severity assessment.


Assuntos
Fibrose Pulmonar Idiopática , Lipidômica , Humanos , Projetos Piloto , Pulmão , Tomografia Computadorizada por Raios X/métodos , Biomarcadores , Lipídeos , Fibrose , Estudos Retrospectivos
5.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L784-L793, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380907

RESUMO

Antenatal steroid (ANS) therapy is the standard care for women at imminent risk of preterm labor. Despite extensive and long-standing use, 40%-50% of babies exposed antenatally to steroids do not derive benefit; remaining undelivered 7 days or more after ANS treatment is associated with a lack of treatment benefit and increased risk of harm. We used a pregnant sheep model to evaluate the impact of continuous versus pulsed ANS treatments on fetal lung maturation at an extended, 8-day treatment to delivery interval. Continuous low-dose ANS treatments for more than 72 h in duration improved fetal lung maturation at 8 days after treatment initiation. If fetal ANS exposure was interrupted, the beneficial ANS effect was lost. Truncated treatments, including that simulating the current clinical treatment regimen, did not improve lung function. Variable fetal lung maturation was correlated to the amount of saturated phosphatidylcholine present in the lung fluid. These data demonstrate that 1) the durability of ANS therapy may be enhanced by employing an extended, low-dose treatment regimen by reducing total dose and 2) interrupting the continuity of fetal exposure by allowing it to fall below a minimal threshold was associated with comparably poor functional maturation of the preterm ovine lung.


Assuntos
Betametasona , Maturidade dos Órgãos Fetais , Animais , Betametasona/farmacologia , Feminino , Glucocorticoides/farmacologia , Humanos , Pulmão , Gravidez , Cuidado Pré-Natal , Ovinos , Esteroides/farmacologia
6.
Thorax ; 77(2): 203-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34404754

RESUMO

COVID-19 has different clinical stages, and effective therapy depends on the location and extent of the infection. The purpose of this review is to provide a background for understanding the progression of the disease throughout the pulmonary epithelium and discuss therapeutic options. The prime sites for infection that will be contrasted in this review are the conducting airways and the gas exchange portions of the lung. These two sites are characterised by distinct cellular composition and innate immune responses, which suggests the use of distinct therapeutic agents. In the nose, ciliated cells are the primary target cells for SARS-CoV-2 viral infection, replication and release. Infected cells shed their cilia, which disables mucociliary clearance. Evidence further points to a suppressed or incompletely activated innate immune response to SARS-CoV-2 infection in the upper airways. Asymptomatic individuals can still have a productive viral infection and infect others. In the gas exchange portion of the lung, the alveolar type II epithelial cell is the main target cell type. Cell death and marked innate immune response during infection likely contribute to alveolar damage and resultant acute respiratory distress syndrome. Alveolar infection can precipitate a hyperinflammatory state, which is the target of many therapies in severe COVID-19. Disease resolution in the lung is variable and may include scaring and long-term sequalae because the alveolar type II cells are also progenitor cells for the alveolar epithelium.


Assuntos
COVID-19 , Células Epiteliais , Humanos , Pulmão , Mucosa Respiratória , SARS-CoV-2
7.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33419885

RESUMO

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrate high rates of co-infection with respiratory viruses, including influenza A (IAV), suggesting pathogenic interactions. METHODS: We investigated how IAV may increase the risk of COVID-19 lung disease, focusing on the receptor angiotensin-converting enzyme (ACE)2 and the protease TMPRSS2, which cooperate in the intracellular uptake of SARS-CoV-2. RESULTS: We found, using single-cell RNA sequencing of distal human nondiseased lung homogenates, that at baseline, ACE2 is minimally expressed in basal, goblet, ciliated and secretory epithelial cells populating small airways. We focused on human small airway epithelial cells (SAECs), central to the pathogenesis of lung injury following viral infections. Primary SAECs from nondiseased donor lungs apically infected (at the air-liquid interface) with IAV (up to 3×105 pfu; ∼1 multiplicity of infection) markedly (eight-fold) boosted the expression of ACE2, paralleling that of STAT1, a transcription factor activated by viruses. IAV increased the apparent electrophoretic mobility of intracellular ACE2 and generated an ACE2 fragment (90 kDa) in apical secretions, suggesting cleavage of this receptor. In addition, IAV increased the expression of two proteases known to cleave ACE2, sheddase ADAM17 (TACE) and TMPRSS2 and increased the TMPRSS2 zymogen and its mature fragments, implicating proteolytic autoactivation. CONCLUSION: These results indicate that IAV amplifies the expression of molecules necessary for SARS-CoV-2 infection of the distal lung. Furthermore, post-translational changes in ACE2 by IAV may increase vulnerability to lung injury such as acute respiratory distress syndrome during viral co-infections. These findings support efforts in the prevention and treatment of influenza infections during the COVID-19 pandemic.


Assuntos
COVID-19 , Influenza Humana , Células Epiteliais , Humanos , Pandemias , Peptidil Dipeptidase A , SARS-CoV-2
8.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L239-L255, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460513

RESUMO

While antenatal glucocorticoids are widely used to enhance lung function in preterm infants, cellular and molecular mechanisms by which glucocorticoid receptor (GR) signaling influences lung maturation remain poorly understood. Deletion of the glucocorticoid receptor gene (Nr3c1) from fetal pulmonary mesenchymal cells phenocopied defects caused by global Nr3c1 deletion, while lung epithelial- or endothelial-specific Nr3c1 deletion did not impair lung function at birth. We integrated genome-wide gene expression profiling, ATAC-seq, and single cell RNA-seq data in mice in which GR was deleted or activated to identify the cellular and molecular mechanisms by which glucocorticoids control prenatal lung maturation. GR enhanced differentiation of a newly defined proliferative mesenchymal progenitor cell (PMP) into matrix fibroblasts (MFBs), in part by directly activating extracellular matrix-associated target genes, including Fn1, Col16a4, and Eln and by modulating VEGF, JAK-STAT, and WNT signaling. Loss of mesenchymal GR signaling blocked fibroblast progenitor differentiation into mature MFBs, which in turn increased proliferation of SOX9+ alveolar epithelial progenitor cells and inhibited differentiation of mature alveolar type II (AT2) and AT1 cells. GR signaling controls genes required for differentiation of a subset of proliferative mesenchymal progenitors into matrix fibroblasts, in turn, regulating signals controlling AT2/AT1 progenitor cell proliferation and differentiation and identifying cells and processes by which glucocorticoid signaling regulates fetal lung maturation.


Assuntos
Diferenciação Celular/fisiologia , Glucocorticoides/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia
9.
FASEB J ; 33(9): 10300-10314, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211919

RESUMO

Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.


Assuntos
Amiloide/toxicidade , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Transtornos da Memória/patologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/isolamento & purificação , Proteínas tau/toxicidade , Amiloide/metabolismo , Animais , Endotélio Vascular/patologia , Medo , Feminino , Humanos , Aprendizagem , Pulmão/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Infecções por Pseudomonas/microbiologia , Proteínas tau/metabolismo
10.
Pediatr Res ; 86(5): 589-594, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365919

RESUMO

BACKGROUND: The use of antenatal corticosteroids (ACS) in low-resource environments is sporadic. Further, drug choice, dose, and route of ACS are not optimized. We report the pharmacokinetics and pharmacodynamics of oral dosing of ACS using a preterm sheep model. METHODS: We measured pharmacokinetics of oral betamethasone-phosphate (Beta-P) and dexamethasone-phosphate (Dex-P) using catheterized pregnant sheep. We compared fetal lung maturation responses of oral Beta-P and Dex-P to the standard treatment with 2 doses of the i.m. mixture of Beta-P and betamethasone-acetate at 2, 5, and 7 days after initiation of ACS. RESULTS: Oral Dex-P had lower bioavailability than Beta-P, giving a lower maximum maternal and fetal concentration. A single oral dose of 0.33 mg/kg of Beta-P was equivalent to the standard clinical treatment assessed at 2 days; 2 doses of 0.16 mg/kg of oral Beta-P were equivalent to the standard clinical treatment at 7 days as assessed by lung mechanics and gas exchange after preterm delivery and ventilation. In contrast, oral Dex-P was ineffective because of its decreased bioavailability. CONCLUSION: Using a sheep model, we demonstrate the use of pharmacokinetics to develop oral dosing strategies for ACS. Oral dosing is feasible and may facilitate access to ACS in low-resource environments.


Assuntos
Betametasona/análogos & derivados , Dexametasona/análogos & derivados , Glucocorticoides/administração & dosagem , Ovinos/embriologia , Administração Oral , Animais , Betametasona/administração & dosagem , Betametasona/farmacocinética , Disponibilidade Biológica , Dexametasona/administração & dosagem , Dexametasona/farmacocinética , Feminino , Glucocorticoides/farmacocinética , Pulmão/crescimento & desenvolvimento , Gravidez
11.
Haematologica ; 103(1): 40-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29051279

RESUMO

Activated erythropoietin (EPO) receptor (EPOR) signaling causes erythrocytosis. The important role of macrophages for the erythroid expansion and differentiation process has been reported, both in baseline and stress erythropoiesis. However, the significance of EPOR signaling for regulation of macrophages contributing to erythropoiesis has not been fully understood. Here we show that EPOR signaling activation quickly expands both erythrocytes and macrophages in vivo in mouse models of primary and secondary erythrocytosis. To mimic the chimeric condition and expansion of the disease clone in the polycythemia vera patients, we combined Cre-inducible Jak2V617F/+ allele with LysM-Cre allele which expresses in mature myeloid cells and some of the HSC/Ps (LysM-Cre;Jak2V617F/+ mice). We also generated inducible EPO-mediated secondary erythrocytosis models using Alb-Cre, Rosa26-loxP-stop-loxP-rtTA, and doxycycline inducible EPAS1-double point mutant (DPM) alleles (Alb-Cre;DPM mice). Both models developed a similar degree of erythrocytosis. Macrophages were also increased in both models without increase of major inflammatory cytokines and chemokines. EPO administration also quickly induced these macrophages in wild-type mice before observable erythrocytosis. These findings suggest that EPOR signaling activation could induce not only erythroid cell expansion, but also macrophages. Surprisingly, an in vivo genetic approach indicated that most of those macrophages do not express EPOR, but erythroid cells and macrophages contacted tightly with each other. Given the importance of the central macrophages as a niche for erythropoiesis, further elucidation of the EPOR signaling mediated-regulatory mechanisms underlying macrophage induction might reveal a potential therapeutic target for erythrocytosis.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Eritroblastos/metabolismo , Macrófagos/metabolismo , Policitemia/etiologia , Policitemia/metabolismo , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Contagem de Células , Subunidade beta Comum dos Receptores de Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Eritroblastos/efeitos dos fármacos , Eritropoetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Genes Reporter , Vetores Genéticos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Policitemia/patologia , Receptores da Eritropoetina/genética
12.
Thorax ; 72(5): 481-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28070014

RESUMO

'LungGENS', our previously developed web tool for mapping single-cell gene expression in the developing lung, has been well received by the pulmonary research community. With continued support from the 'LungMAP' consortium, we extended the scope of the LungGENS database to accommodate transcriptomics data from pulmonary tissues and cells from human and mouse at different stages of lung development. Lung Gene Expression Analysis (LGEA) web portal is an extended version of LungGENS useful for the analysis, display and interpretation of gene expression patterns obtained from single cells, sorted cell populations and whole lung tissues. The LGEA web portal is freely available at http://research.cchmc.org/pbge/lunggens/mainportal.html.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Internet , Pulmão/crescimento & desenvolvimento , Animais , Mapeamento Cromossômico , Humanos , Camundongos , Software , Fatores de Transcrição
13.
Haematologica ; 102(11): 1956-1968, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28860338

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome characterized by overwhelming immune activation. A steroid and chemotherapy-based regimen remains as the first-line of therapy but it has substantial morbidity. Thus, novel, less toxic therapy for HLH is urgently needed. Although differences exist between familial HLH (FHL) and secondary HLH (sHLH), they have many common features. Using bioinformatic analysis with FHL and systemic juvenile idiopathic arthritis, which is associated with sHLH, we identified a common hypoxia-inducible factor 1A (HIF1A) signature. Furthermore, HIF1A protein levels were found to be elevated in the lymphocytic choriomeningitis virus infected Prf1-/- mouse FHL model and the CpG oligodeoxynucleotide-treated mouse sHLH model. To determine the role of HIF1A in HLH, a transgenic mouse with an inducible expression of HIF1A/ARNT proteins in hematopoietic cells was generated, which caused lethal HLH-like phenotypes: severe anemia, thrombocytopenia, splenomegaly, and multi-organ failure upon HIF1A induction. Mechanistically, these mice show type 1 polarized macrophages and dysregulated natural killler cells. The HLH-like phenotypes in this mouse model are independent of both adaptive immunity and interferon-γ, suggesting that HIF1A is downstream of immune activation in HLH. In conclusion, our data reveal that HIF1A signaling is a critical mediator for HLH and could be a novel therapeutic target for this syndrome.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfo-Histiocitose Hemofagocítica/metabolismo , Transdução de Sinais , Imunidade Adaptativa , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/mortalidade , Linfo-Histiocitose Hemofagocítica/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma
15.
Handb Exp Pharmacol ; 234: 309-327, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832494

RESUMO

Classic G-protein-coupled receptors (GPCRs) control multiple aspects of pulmonary physiology as demonstrated by loss-of-function experiments in mice and pharmacologic targeting of GPCRs for treatment of several pulmonary diseases. Emerging data demonstrate critical roles for members of the adhesion GPCR (aGPCR) family in pulmonary development, homeostasis, and disease. Although this field is still in its infancy, this chapter will review all available data regarding aGPCRs in pulmonary biology, with a particular focus on the aGPCR for which the most substantial data to date exist: Adgrf5.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Camundongos , Morfogênese , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Transcrição Gênica
16.
J Virol ; 88(20): 11811-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100846

RESUMO

Human cytomegalovirus (HCMV) is a pathogen found worldwide and is a serious threat to immunocompromised individuals and developing fetuses. Due to the species specificity of cytomegaloviruses, murine cytomegalovirus (MCMV) has been used as a model for in vivo studies of HCMV pathogenesis. The MCMV genome, like the genomes of other beta- and gammaherpesviruses, encodes G protein-coupled receptors (GPCRs) that modulate host signaling pathways presumably to facilitate viral replication and dissemination. Among these viral receptors, the M33 GPCR carried by MCMV is an activator of CREB, NF-κB, and phospholipase C-ß signaling pathways and has been implicated in aspects of pathogenesis in vivo, including persistence in the salivary glands of BALB/c mice. In this study, we used immunocompetent nonobese diabetic (NOD) and immunocompromised NOD-scid-gamma (NSG) mice to further investigate the salivary gland defect exhibited by M33 deficiency. Interestingly, we demonstrate that virus with an M33 deletion (ΔM33) can replicate in the salivary gland of immunocompromised animals, albeit with a 400-fold growth defect compared with the growth of wild-type virus. Moreover, we determined that M33 does not have a role in cell-associated hematogenous dissemination but is required for viral amplification once the virus reaches the salivary gland. We conclude that the reduced replicative capacity of the ΔM33 virus is due to a specific defect occurring within the localized environment of the salivary gland. Importantly, since the salivary gland represents a site essential for persistence and horizontal transmission, an understanding of the mechanisms of viral replication within this site could lead to the generation of novel therapeutics useful for the prevention of HCMV spread. Importance: Human cytomegalovirus infects the majority of the American people and can reside silently in infected individuals for the duration of their lives. Under a number of circumstances, the virus can reactivate, leading to a variety of diseases in both adults and developing babies, and therefore, identifying the function of viral proteins is essential to understand how the virus spreads and causes disease. We aim to utilize animal models to study the function of an important class of viral proteins termed G protein-coupled receptors with the ultimate goal of developing inhibitors to these proteins that could one day be used to prevent viral spread.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/genética , Glândulas Salivares/virologia , Animais , Linhagem Celular , Citomegalovirus/genética , Camundongos , Camundongos Endogâmicos BALB C , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Am J Respir Cell Mol Biol ; 49(3): 348-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590306

RESUMO

Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/metabolismo , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Receptores Acoplados a Proteínas G/genética , Mucosa Respiratória/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Células Epiteliais/patologia , Éxons , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosfatidilcolinas/biossíntese , Alvéolos Pulmonares/patologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
18.
Dev Biol ; 362(1): 24-41, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094019

RESUMO

Hypoxia inducible factor (HIF) 1a, EPAS1 and NEPAS are expressed in the embryonic mouse lung and each isoform exhibits distinct spatiotemporal expression patterns throughout morphogenesis. To further assess the role of the HIF1a isoform in lung epithelial cell differentiation and homeostasis, we created transgenic mice that express a constitutively active isoform of human HIF-1a (HIF-1a three point mutant (TPM)), in a doxycycline-dependent manner. Expression of HIF1a TPM in the developing pulmonary epithelium resulted in lung hypoplasia characterized by defective branching morphogenesis, altered cellular energetics and impaired epithelial maturation, culminating in neonatal lethality at birth from severe respiratory distress. Histological and biochemical analyses revealed expanded glycogen pools in the pulmonary epithelial cells at E18.5, concomitant with decreased pulmonary surfactant, suggesting a delay or an arrest in maturation. Importantly, these defects occurred in the absence of apoptosis or necrosis. In addition, sub-pleural hemorrhaging was evident as early as E14.5 in HIF1a TPM lungs, despite normal patterning of the blood vasculature, consistent with defects in endothelial barrier function. Epithelial expression of HIF1a TPM also resulted in increased VEGFA and VEGFC production, an increase in the number of lymphatic vessels and indirect activation of the multiple Notch pathway components in endothelial precursor cells. Collectively, these data indicate that HIF-1a protein levels in the pulmonary epithelium must be tightly controlled for proper development of the epithelial and mesenchymal compartments.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/embriologia , Linfangiogênese/fisiologia , Mucosa Respiratória/embriologia , Análise de Variância , Animais , Primers do DNA/genética , DNA Mitocondrial/genética , Doxiciclina , Vetores Genéticos/genética , Glicogênio/metabolismo , Soros Imunes/genética , Immunoblotting , Imuno-Histoquímica , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fosfatidilcolinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/metabolismo , Transgenes/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
19.
Am J Respir Crit Care Med ; 186(10): 1014-24, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23043085

RESUMO

RATIONALE: Hermansky-Pudlak syndrome (HPS) is a family of recessive disorders of intracellular trafficking defects that are associated with highly penetrant pulmonary fibrosis. Naturally occurring HPS mice reliably model important features of the human disease, including constitutive alveolar macrophage activation and susceptibility to profibrotic stimuli. OBJECTIVES: To decipher which cell lineage(s) in the alveolar compartment is the predominant driver of fibrotic susceptibility in HPS. METHODS: We used five different HPS and Chediak-Higashi mouse models to evaluate genotype-specific fibrotic susceptibility. To determine whether intrinsic defects in HPS alveolar macrophages cause fibrotic susceptibility, we generated bone marrow chimeras in HPS and wild-type mice. To directly test the contribution of the pulmonary epithelium, we developed a transgenic model with epithelial-specific correction of the HPS2 defect in an HPS mouse model. MEASUREMENTS AND MAIN RESULTS: Bone marrow transplantation experiments demonstrated that both constitutive alveolar macrophage activation and increased susceptibility to bleomycin-induced fibrosis were conferred by the genotype of the lung epithelium, rather than that of the bone marrow-derived, cellular compartment. Furthermore, transgenic epithelial-specific correction of the HPS defect significantly attenuated bleomycin-induced alveolar epithelial apoptosis, fibrotic susceptibility, and macrophage activation. Type II cell apoptosis was genotype specific, caspase dependent, and correlated with the degree of fibrotic susceptibility. CONCLUSIONS: We conclude that pulmonary fibrosis in naturally occurring HPS mice is driven by intracellular trafficking defects that lower the threshold for pulmonary epithelial apoptosis. Our findings demonstrate a pivotal role for the alveolar epithelium in the maintenance of alveolar homeostasis and regulation of alveolar macrophage activation.


Assuntos
Predisposição Genética para Doença , Síndrome de Hermanski-Pudlak/genética , Alvéolos Pulmonares/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Mucosa Respiratória/fisiopatologia , Complexo 3 de Proteínas Adaptadoras/genética , Animais , Bleomicina/farmacologia , Síndrome de Hermanski-Pudlak/complicações , Síndrome de Hermanski-Pudlak/fisiopatologia , Humanos , Pulmão/patologia , Ativação de Macrófagos , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Knockout , Mutação , Transporte Proteico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia
20.
Nat Commun ; 14(1): 8452, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114516

RESUMO

Lung epithelial regeneration after acute injury requires coordination cellular coordination to pattern the morphologically complex alveolar gas exchange surface. During adult lung regeneration, Wnt-responsive alveolar epithelial progenitor (AEP) cells, a subset of alveolar type 2 (AT2) cells, proliferate and transition to alveolar type 1 (AT1) cells. Here, we report a refined primary murine alveolar organoid, which recapitulates critical aspects of in vivo regeneration. Paired scRNAseq and scATACseq followed by transcriptional regulatory network (TRN) analysis identified two AT1 transition states driven by distinct regulatory networks controlled in part by differential activity of Nkx2-1. Genetic ablation of Nkx2-1 in AEP-derived organoids was sufficient to cause transition to a proliferative stressed Krt8+ state, and AEP-specific deletion of Nkx2-1 in adult mice led to rapid loss of progenitor state and uncontrolled growth of Krt8+ cells. Together, these data implicate dynamic epigenetic maintenance via Nkx2-1 as central to the control of facultative progenitor activity in AEPs.


Assuntos
Epigenômica , Pulmão , Animais , Camundongos , Diferenciação Celular , Células Epiteliais , Homeostase , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA