Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 151(6): 1270-82, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23201141

RESUMO

In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are also widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell-cycle-dependent manner. Their presence is critical for cellular fitness because they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Membrana Celular/metabolismo , Difusão , Complexos Multiproteicos/metabolismo
2.
PLoS Genet ; 18(3): e1010143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344548

RESUMO

Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.


Assuntos
Cólera , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Forma Celular , Cólera/genética , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Peptidoglicano/genética , Peptidoglicano/metabolismo , Vibrio cholerae/metabolismo
3.
J Am Chem Soc ; 146(26): 17669-17678, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38905328

RESUMO

The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.


Assuntos
Corantes Fluorescentes , Mycobacterium tuberculosis , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos
4.
Appl Environ Microbiol ; 90(4): e0208723, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557137

RESUMO

Filamentous growth of streptomycetes coincides with the synthesis and deposition of an uncharacterized protective glucan at hyphal tips. Synthesis of this glucan depends on the integral membrane protein CslA and the radical copper oxidase GlxA, which are part of a presumably large multiprotein complex operating at growing tips. Here, we show that CslA and GlxA interact by forming a protein complex that is sufficient to synthesize cellulose in vitro. Mass spectrometry analysis revealed that the purified complex produces cellulose chains with a degree of polymerization of at least 80 residues. Truncation analyses demonstrated that the removal of a significant extracellular segment of GlxA had no impact on complex formation, but significantly diminished activity of CslA. Altogether, our work demonstrates that CslA and GlxA form the active core of the cellulose synthase complex and provide molecular insights into a unique cellulose biosynthesis system that is conserved in streptomycetes. IMPORTANCE: Cellulose stands out as the most abundant polysaccharide on Earth. While the synthesis of this polysaccharide has been extensively studied in plants and Gram-negative bacteria, the mechanisms in Gram-positive bacteria have remained largely unknown. Our research unveils a novel cellulose synthase complex formed by the interaction between the cellulose synthase-like protein CslA and the radical copper oxidase GlxA from Streptomyces lividans, a soil-dwelling Gram-positive bacterium. This discovery provides molecular insights into the distinctive cellulose biosynthesis machinery. Beyond expanding our understanding of cellulose biosynthesis, this study also opens avenues for exploring biotechnological applications and ecological roles of cellulose in Gram-positive bacteria, thereby contributing to the broader field of microbial cellulose biosynthesis and biofilm research.


Assuntos
Polissacarídeos , Streptomyces lividans , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Polissacarídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Celulose/metabolismo
5.
Appl Environ Microbiol ; 89(1): e0159622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602353

RESUMO

Bacteriophages are viruses that infect bacteria. This property makes them highly suitable for varied uses in industry or in the development of the treatment of bacterial infections. However, the conventional methods that are used to isolate and analyze these bacteriophages from the environment are generally cumbersome and time consuming. Here, we adapted a high-throughput microfluidic setup for long-term analysis of bacteriophage-bacteria interaction and demonstrate isolation of phages from environmental samples. IMPORTANCE Bacteriophages are gaining increased attention for their potential application as agents to combat antibiotic-resistant infections. However, isolation and characterization of new phages are time consuming and limited by currently used methods. The microfluidics platform presented here allows the isolation and long-term analysis of phages and their effect on host cells with fluorescent light microscopy imaging. Furthermore, this new workflow allows high-throughput characterization of environmental samples for the identification of phages alongside gaining detailed insight into the host response. Taken together, this microfluidics platform will be a valuable tool for phage research, enabling faster and more efficient screening and characterization of host-phage interactions.


Assuntos
Infecções Bacterianas , Bacteriófagos , Humanos , Bacteriófagos/fisiologia , Microfluídica , Infecções Bacterianas/terapia , Bactérias
6.
Cell ; 134(6): 956-68, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805089

RESUMO

Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB*ori complex and thereby anchors sister chromosomes at opposite poles. This step is essential for stabilizing bipolar gradients of a cell division inhibitor and setting up division near midcell. PopZ also affects polar stalk morphogenesis and mediates the polar localization of the morphogenetic and cell cycle signaling proteins CckA and DivJ. Polar accumulation of PopZ, which is central to its polarizing activity, can be achieved independently of division and does not appear to be dictated by the pole curvature. Instead, evidence suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Cromossomos Bacterianos/metabolismo , Replicação do DNA , Escherichia coli/metabolismo , Origem de Replicação
7.
J Bacteriol ; 204(8): e0014422, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862756

RESUMO

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS. Mutant analysis suggests a relationship between this novel structure and the fT3SS, but not the NF-T3SS. While the function of this novel structure remains unknown, we hypothesize that either some of the fT3SS proteins assemble within the hat-like structure, perhaps including the fT3SS core complex, or that fT3SS components regulate other proteins that form part of this novel structure. IMPORTANCE The type III secretion system (T3SS) is a fascinating suite of proteins involved in building diverse macromolecular systems, including the bacterial flagellar motility machine, the injectisome machinery that bacteria use to inject effector proteins into host cells, and probably membrane nanotubes which connect bacterial cells. Here, we accidentally discovered a novel inner membrane-associated complex related to the flagellar T3SS. Examining our lab database, which is comprised of more than 40,000 cryo-tomograms of dozens of species, we discovered that this novel structure is both ubiquitous and ancient, being present in highly divergent classes of bacteria. Discovering a novel, widespread structure related to what are among the best-studied molecular machines in bacteria will open new venues for research aiming at understanding the function and evolution of T3SS proteins.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estruturas Bacterianas , Flagelos/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
8.
Mol Microbiol ; 115(6): 1181-1190, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33278050

RESUMO

The cell wall is considered an essential component for bacterial survival, providing structural support, and protection from environmental insults. Under normal growth conditions, filamentous actinobacteria insert new cell wall material at the hyphal tips regulated by the coordinated activity of cytoskeletal proteins and cell wall biosynthetic enzymes. Despite the importance of the cell wall, some filamentous actinobacteria can produce wall-deficient S-cells upon prolonged exposure to hyperosmotic stress. Here, we performed cryo-electron tomography and live cell imaging to further characterize S-cell extrusion in Kitasatospora viridifaciens. We show that exposure to hyperosmotic stress leads to DNA compaction, membrane and S-cell extrusion, and thinning of the cell wall at hyphal tips. Additionally, we find that the extrusion of S-cells is abolished in a cytoskeletal mutant strain that lacks the intermediate filament-like protein FilP. Furthermore, micro-aerobic culturing promotes the formation of S-cells in the wild type, but the limited oxygen still impedes S-cell formation in the ΔfilP mutant. These results demonstrate that S-cell formation is stimulated by oxygen-limiting conditions and dependent on functional cytoskeleton remodeling.


Assuntos
Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Pressão Osmótica , Streptomycetaceae/metabolismo , Anaerobiose/fisiologia , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Tomografia com Microscopia Eletrônica , Filamentos Intermediários/genética , Oxigênio/metabolismo , Microbiologia do Solo , Streptomycetaceae/genética
9.
PLoS Biol ; 17(3): e3000165, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30889173

RESUMO

Bacteria switch only intermittently to motile planktonic lifestyles under favorable conditions. Under chronic nutrient deprivation, however, bacteria orchestrate a switch to stationary phase, conserving energy by altering metabolism and stopping motility. About two-thirds of bacteria use flagella to swim, but how bacteria deactivate this large molecular machine remains unclear. Here, we describe the previously unreported ejection of polar motors by γ-proteobacteria. We show that these bacteria eject their flagella at the base of the flagellar hook when nutrients are depleted, leaving a relic of a former flagellar motor in the outer membrane. Subtomogram averages of the full motor and relic reveal that this is an active process, as a plug protein appears in the relic, likely to prevent leakage across their outer membrane; furthermore, we show that ejection is triggered only under nutritional depletion and is independent of the filament as a possible mechanosensor. We show that filament ejection is a widespread phenomenon demonstrated by the appearance of relic structures in diverse γ-proteobacteria including Plesiomonas shigelloides, Vibrio cholerae, Vibrio fischeri, Shewanella putrefaciens, and Pseudomonas aeruginosa. While the molecular details remain to be determined, our results demonstrate a novel mechanism for bacteria to halt costly motility when nutrients become scarce.


Assuntos
Gammaproteobacteria/patogenicidade , Flagelos/metabolismo , Gammaproteobacteria/metabolismo , Plesiomonas/metabolismo , Plesiomonas/patogenicidade , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Shewanella putrefaciens/metabolismo , Shewanella putrefaciens/patogenicidade , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade
10.
Mol Microbiol ; 114(3): 367-376, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32347610

RESUMO

Vibrio cholerae, the causative agent of the acute diarrheal disease cholera, is able to thrive in diverse habitats such as natural water bodies and inside human hosts. To ensure their survival, these bacteria rely on chemosensory pathways to sense and respond to changing environmental conditions. These pathways constitute a highly sophisticated cellular control system in Bacteria and Archaea. Reflecting the complex life cycle of V. cholerae, this organism has three different chemosensory pathways that together contain over 50 proteins expressed under different environmental conditions. Only one of them is known to control motility, while the function of the other two remains to be discovered. Here, we provide an overview of the chemosensory systems in V. cholerae and the advances toward understanding their structure and function.


Assuntos
Proteínas de Bactérias/fisiologia , Quimiotaxia , Transdução de Sinais , Vibrio cholerae/fisiologia , Cólera/microbiologia , Humanos , Vibrio cholerae/ultraestrutura , Virulência
11.
EMBO J ; 36(11): 1577-1589, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28438890

RESUMO

FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram-negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ-like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ-driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/crescimento & desenvolvimento , Citocinese , Proteínas do Citoesqueleto/metabolismo , Multimerização Proteica , Proteus mirabilis/citologia , Proteus mirabilis/crescimento & desenvolvimento , Parede Celular/química , Parede Celular/metabolismo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Peptidoglicano/análise , Peptidoglicano/biossíntese
12.
Proc Natl Acad Sci U S A ; 115(52): 13365-13370, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30541885

RESUMO

The chemoreceptor array, a remarkably ordered supramolecular complex, is composed of hexagonally packed trimers of receptor dimers networked by a histidine kinase and one or more coupling proteins. Even though the receptor packing is universal among chemotactic bacteria and archaea, the array architecture has been extensively studied only in selected model organisms. Here, we show that even in the complete absence of the kinase, the cluster II arrays in Vibrio cholerae retain their native spatial localization and the iconic hexagonal packing of the receptors with 12-nm spacing. Our results demonstrate that the chemotaxis array is versatile in composition, a property that allows auxiliary chemotaxis proteins such as ParP and CheV to integrate directly into the assembly. Along with its compositional variability, cluster II arrays exhibit a low degree of structural stability compared with the ultrastable arrays in Escherichia coli We propose that the variability in chemoreceptor arrays is an important mechanism that enables the incorporation of chemotaxis proteins based on their availability.


Assuntos
Células Quimiorreceptoras/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia , Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Variação Genética/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Ligação Proteica , Transdução de Sinais
13.
Mol Microbiol ; 111(3): 637-661, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536925

RESUMO

Molecular components of the Brucella abortus cell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function in B. abortus envelope stress resistance and infection. Expression of this gene, which we name eipA, is directly activated by the essential cell cycle regulator, CtrA. eipA encodes a soluble periplasmic protein that adopts an unusual eight-stranded ß-barrel fold. Deletion of eipA attenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the cell envelope integrity. Transposon disruption of genes required for LPS O-polysaccharide biosynthesis is synthetically lethal with eipA deletion. This genetic connection between O-polysaccharide and eipA is corroborated by our discovery that eipA is essential in Brucella ovis, a naturally rough species that harbors mutations in several genes required for O-polysaccharide production. Conditional depletion of eipA expression in B. ovis results in a cell chaining phenotype, providing evidence that eipA directly or indirectly influences cell division in Brucella. We conclude that EipA is a molecular determinant of Brucella virulence that functions to maintain cell envelope integrity and influences cell division.


Assuntos
Brucella abortus/crescimento & desenvolvimento , Brucella abortus/patogenicidade , Ciclo Celular , Parede Celular/metabolismo , Antígenos O/metabolismo , Proteínas Periplásmicas/metabolismo , Fatores de Virulência/metabolismo , Animais , Brucella abortus/enzimologia , Brucella abortus/genética , Brucella ovis/genética , Brucella ovis/crescimento & desenvolvimento , Brucelose/microbiologia , Brucelose/patologia , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Silenciamento de Genes , Genes Bacterianos , Genes Essenciais , Histocitoquímica , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Conformação Proteica , Dobramento de Proteína , Baço/patologia , Fatores de Virulência/química , Fatores de Virulência/genética
14.
Microsc Microanal ; 26(5): 978-988, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32878652

RESUMO

Symmetry is omnipresent in nature and we encounter symmetry routinely in our everyday life. It is also common on the microscopic level, where symmetry is often key to the proper function of core biological processes. The human brain is exquisitely well suited to recognize such symmetrical features with ease. In contrast, computational recognition of such patterns in images is still surprisingly challenging. In this paper we describe a mathematical approach to identifying smaller local symmetrical structures within larger images. Our algorithm attributes a local symmetry score to each image pixel, which subsequently allows the identification of the symmetrical centers of an object. Though there are already many methods available to detect symmetry in images, to the best of our knowledge, our algorithm is the first that is easily applicable in ImageJ/FIJI. We have created an interactive plugin in FIJI that allows the detection and thresholding of local symmetry values. The plugin combines the different reflection symmetry axis of a square to get a good coverage of reflection symmetry in all directions. To demonstrate the plugins potential, we analyzed images of bacterial chemoreceptor arrays and intracellular vesicle trafficking events, which are two prominent examples of biological systems with symmetrical patterns.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão , Fenômenos Físicos , Algoritmos , Quimiotaxia , Antropologia Forense , Humanos , Aprendizado de Máquina
15.
Microsc Microanal ; 26(3): 413-418, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284082

RESUMO

Visualizing biological structures and cellular processes in their native state is a major goal of many scientific laboratories. In the past 20 years, the technique of preserving samples by vitrification has greatly expanded, specifically for use in cryogenic electron microscopy (cryo-EM). Here, we report on improvements in the design and use of a portable manual cryogenic plunge freezer that is intended for use in laboratories that are not equipped for the cryopreservation of samples. The construction of the instrument is economical, can be produced by a local machine shop without specialized equipment, and lowers the entry barriers for newcomers with a reliable alternative to costly commercial equipment. The improved design allows for successful freezing of isolated proteins for single particle analysis as well as bacterial cells for cryo-electron tomography. With this instrument, groups will be able to prepare vitreous samples whenever and wherever necessary, which can then be imaged at local or national cryo-EM facilities.


Assuntos
Congelamento , Microscopia Eletrônica/métodos , Manejo de Espécimes/métodos , Vitrificação , Bactérias , Microscopia Crioeletrônica/métodos , Tomografia
16.
Genes Dev ; 26(20): 2348-60, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23070816

RESUMO

The cell poles constitute key subcellular domains that are often critical for motility, chemotaxis, and chromosome segregation in rod-shaped bacteria. However, in nearly all rods, the processes that underlie the formation, recognition, and perpetuation of the polar domains are largely unknown. Here, in Vibrio cholerae, we identified HubP (hub of the pole), a polar transmembrane protein conserved in all vibrios, that anchors three ParA-like ATPases to the cell poles and, through them, controls polar localization of the chromosome origin, the chemotactic machinery, and the flagellum. In the absence of HubP, oriCI is not targeted to the cell poles, chemotaxis is impaired, and a small but increased fraction of cells produces multiple, rather than single, flagella. Distinct cytoplasmic domains within HubP are required for polar targeting of the three ATPases, while a periplasmic portion of HubP is required for its localization. HubP partially relocalizes from the poles to the mid-cell prior to cell division, thereby enabling perpetuation of the polar domain in future daughter cells. Thus, a single polar hub is instrumental for establishing polar identity and organization.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Segregação de Cromossomos/fisiologia , Cromossomos Bacterianos/metabolismo , Vibrio cholerae/fisiologia , Proteínas de Bactérias/genética , Quimiotaxia/genética , Segregação de Cromossomos/genética , Flagelos/genética , Flagelos/metabolismo , Deleção de Genes , Complexo de Reconhecimento de Origem/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
17.
J Bacteriol ; 201(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936371

RESUMO

The Gram-negative cell envelope is a remarkable structure with core components that include an inner membrane, an outer membrane, and a peptidoglycan layer in the periplasmic space between. Multiple molecular systems function to maintain integrity of this essential barrier between the interior of the cell and its surrounding environment. We show that a conserved DUF1849 family protein, EipB, is secreted to the periplasmic space of Brucella species, a monophyletic group of intracellular pathogens. In the periplasm, EipB folds into an unusual 14-stranded ß-spiral structure that resembles the LolA and LolB lipoprotein delivery system, though the overall fold of EipB is distinct from LolA/LolB. Deletion of eipB results in defects in Brucella cell envelope integrity in vitro and in maintenance of spleen colonization in a mouse model of Brucella abortus infection. Transposon disruption of ttpA, which encodes a periplasmic protein containing tetratricopeptide repeats, is synthetically lethal with eipB deletion. ttpA is a reported virulence determinant in Brucella, and our studies of ttpA deletion and overexpression strains provide evidence that this gene also contributes to cell envelope function. We conclude that eipB and ttpA function in the Brucella periplasmic space to maintain cell envelope integrity, which facilitates survival in a mammalian host.IMPORTANCEBrucella species cause brucellosis, a global zoonosis. A gene encoding a conserved DUF1849-family protein, which we have named EipB, is present in all sequenced Brucella and several other genera in the class Alphaproteobacteria The manuscript provides the first functional and structural characterization of a DUF1849 protein. We show that EipB is secreted to the periplasm where it forms a spiral-shaped antiparallel ß protein that is a determinant of cell envelope integrity in vitro and virulence in an animal model of disease. eipB genetically interacts with ttpA, which also encodes a periplasmic protein. We propose that EipB and TtpA function as part of a system required for cell envelope homeostasis in select Alphaproteobacteria.


Assuntos
Membrana Externa Bacteriana/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Periplasma/química , Animais , Brucella abortus/química , Brucelose/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Virulência , Fatores de Virulência/genética
18.
EMBO Rep ; 18(9): 1660-1670, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729461

RESUMO

Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome-excluding material and may function as a polar organizing center for the coccoid cells.


Assuntos
Extensões da Superfície Celular/ultraestrutura , Citoplasma/ultraestrutura , Thermococcus/fisiologia , Thermococcus/ultraestrutura , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/fisiologia , Microscopia Crioeletrônica , Citoplasma/fisiologia , Flagelos/fisiologia , Flagelos/ultraestrutura , Thermococcus/citologia
19.
Proc Natl Acad Sci U S A ; 113(37): 10412-7, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573843

RESUMO

Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae's cytoplasmic chemoreceptor array and establish that it is formed by proteins from cluster I. We further identify a chemoreceptor with an unusual domain architecture, DosM, which is essential for formation of the cytoplasmic arrays. DosM contains two signaling domains and spans the two-layered cytoplasmic arrays. Finally, we present evidence suggesting that this type of receptor is important for the structural stability of the cytoplasmic array.


Assuntos
Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/metabolismo , Quimiotaxia/genética , Citoplasma/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Células Quimiorreceptoras/química , Microscopia Crioeletrônica , Citoplasma/química , Domínios Proteicos , Tomografia , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade
20.
J Bacteriol ; 200(15): e00793-17, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531180

RESUMO

Most motile bacteria are able to bias their movement towards more favorable environments or to escape from obnoxious substances by a process called chemotaxis. Chemotaxis depends on a chemosensory system that is able to sense specific environmental signals and generate a behavioral response. Typically, the signal is transmitted to the bacterial flagellum, ultimately regulating the swimming behavior of individual cells. Chemotaxis is mediated by proteins that assemble into large, highly ordered arrays. It is imperative for successful chemotactic behavior and cellular competitiveness that chemosensory arrays form and localize properly within the cell. Here we review how chemotaxis arrays form and localize in Vibrio cholerae and Vibrio parahaemolyticus We focus on how the ParC/ParP-system mediates cell cycle-dependent polar localization of chemotaxis arrays and thus ensures proper cell pole development and array inheritance upon cell division.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA