Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Mol Struct ; 1290: 135871, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37313328

RESUMO

Quantum mechanical second order Møller-Plesset (MP2) perturbation theory and density functional theory (DFT) Becke, 3-parameter, Lee-Yang-Parr (B3LYP) and Minnesota 2006 local functional (M06L) calculations were performed to optimize structure of nirmatrelvir and compute the Merz-Kollman electrostatic potential (MK ESP), natural population analysis (NPA), Hirshfeld, charge model 5 (CM5), and mulliken partial charges. The mulliken partial charge distribution of nirmatrelvir exhibits a poor correlation with the MK ESP charges in MP2, B3LYP, and M06L calculations respectively. The NPA, Hirshfeld, and CM5 partial charge scheme of nirmatrelvir indicate a reasonable correlation with MK ESP charge assignments in B3LYP and M06L calculations. The above correlations were not improved by the inclusion of implicit solvation model. The MK ESP and CM5 partial charges show a strong correlation between the results of MP2 and two DFT methods. The three optimized structures present a certain degree of differences from the crystal bioactive conformation of nirmatrelvir, suggesting the nirmatrelvir-enzyme complex is formed in the induced-fit model. The Reactivity of warhead electrophilic nitrile is justified by the relatively weaker strength of π bonds in the MP2 calculations. The nirmatrelvir hydrogen bond acceptors consistently show strong delocalization of lone pair electrons in three calculations, whereas hydrogen bond donors are found to have high polarization on the heavy nitrogen atoms in MP2 computations. This work helps to parametrize the force field of nirmatrelvir and improve accuracy of molecular docking and rational inhibitor design.

2.
Proteins ; 84(11): 1625-1643, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27481051

RESUMO

The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a tumor suppressor phosphatase that has recently been found to be frequently mutated in patients with endometriosis, endometrial cancer and ovarian cancer. Here, we present the first computational analysis of 13 somatic missense PTEN mutations associated with these phenotypes. We found that a majority of the mutations are associated in conserved positions within the active site and are clustered within the signature motif, which contain residues that play a crucial role in loop conformation and are essential for catalysis. In silico analyses were utilized to identify the putative effects of these mutations. In addition, coarse-grained models of both wild-type (WT) PTEN and mutants were constructed using elastic network models to explore the interplay of the structural and global dynamic effects that the mutations have on the relationship between genotype and phenotype. The effects of the mutations reveal that the local structure and interactions affect polarity, protein structure stability, electrostatic surface potential, and global dynamics of the protein. Our results offer new insight into the role in which PTEN missense mutations contribute to the molecular mechanism and genotypic-phenotypic correlation of endometriosis, endometrial cancer, and ovarian cancer. Proteins 2016; 84:1625-1643. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias do Endométrio/genética , Endometriose/genética , Estudos de Associação Genética , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Análise Mutacional de DNA , Bases de Dados Genéticas , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endometriose/metabolismo , Endometriose/patologia , Feminino , Expressão Gênica , Genótipo , Humanos , Cinética , Modelos Moleculares , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Eletricidade Estática
3.
J Neurosci ; 33(4): 1615-30, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345234

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT(2C) receptor (5-HT(2C)R) is essential in normal physiology, whereas aberrant 5-HT(2C)R function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT(2C)R interacts with specific protein partners, but the impact of such interactions on 5-HT(2C)R function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT(2C)R and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT(2C)R-mediated biology but not that of the closely homologous 5-HT(2A)R. A peptide derived from the third intracellular loop of the human 5-HT(2C)R [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT(2C)R-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT(2C)R signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT(2C)R allostery and therapeutics for 5-HT(2C)R-mediated disorders.


Assuntos
Modelos Moleculares , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Receptor 5-HT2C de Serotonina/química , Receptor 5-HT2C de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Dados de Sequência Molecular , Atividade Motora/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Transfecção
4.
Int J Biol Macromol ; 269(Pt 1): 132000, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697445

RESUMO

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions per ATP hydrolyzed from the cytoplasm to the lumen. However, how the ATP hydrolysis remotely drives the Ca2+ transport is unclear. In the SERCA1a crystal structures, the ATP hydrolysis is accompanied by the notably increasing tilting angle of the central core (CC) and the Ca2+ transport, and the CC tilting angle dramatically decreases in the E2 to E1 transition. We demonstrated that the significantly increasing tilting motion of the CC drove the Ca2+ release in the molecular dynamics simulation of the R836A variant, and the dramatic spontaneous decrease in the CC tilting angle of the E2 state triggers the restart of the SERCA1a's transport cycle. The repulsion between the phosphorylated D351 and the phosphate groups in ADP triggers the release of ADP from the SERCA1a headpiece. We proposed a novel SERCA transport mechanism in which ATP hydrolysis drives a significant tilting motion of the CC, which drives Ca2+ transport and the A domain rotational motion in the E1P-ADP-2Ca2+ to E2P transition. The dramatic spontaneous decrease in the CC tilting angle of the E2 state drives the restart of the transport cycle.


Assuntos
Trifosfato de Adenosina , Cálcio , Simulação de Dinâmica Molecular , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , Difosfato de Adenosina/metabolismo , Humanos , Transporte Biológico
5.
Comput Biol Chem ; 102: 107810, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610304

RESUMO

Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.32 kcal/mol, whereas the hydrogen bond between RBD Q498 and S30 was quantified as 0.10 kcal/mol. The decrease in ESP partial charge on hydrogen atom of hydroxyl group on S30 drops from 0.38 a.u. to 0.31 a.u., exhibiting the sharing of 0.07 a.u. from the lone pair electron oxygen of N501 due to hydrogen bond formation. The NBO occupancy of hydrogen atom also decreases from 25.79 % to 22.93 % in the hydroxyl H-O NBO bond of S30. However, the minor change of NBO hybridization of hydroxyl oxygen of S30 from sp3.00 to sp3.05 implies the rigidity of hydrogen bond tetrahedral geometry in the relative dynamic protein complex. The O-H---O angle is 165° which is close but not exactly linear. The structural requirement for sp3 hybridization of oxygen for hydroxyl group on S30 and dimension of protein likely prevent O-H---O from adopting linear geometry. The hydrogen bond strengths were also calculated using a variety of DFT methods, and the result of - 3.33 kcal/mol from the M06L method is the closest to that of the MP2 calculation. Results of this work may aid in the COVID-19 vaccine and drug screening.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Oxigênio , Hidrogênio , Ligação Proteica
6.
Cell Rep ; 40(8): 111254, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001965

RESUMO

Allosteric activation and silencing of leukocyte ß2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXß2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH- and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXß2. This work highlights how intrinsically flexible pH- and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.


Assuntos
Integrina alfaXbeta2 , Cátions Bivalentes , Integrina alfaXbeta2/química , Integrina alfaXbeta2/metabolismo , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína
7.
Proteins ; 79(8): 2428-43, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21633972

RESUMO

Hepatitis C virus (HCV) NS3 protease is the key enzyme for its maturation. Three hypotheses have been advanced in the literature to demonstrate the mechanism of the activation of the HCV NS3 protease. A virus-encoded protein NS4A and substrate are proposed to be involved in the activation of the HCV NS3 protease. However, the three hypotheses are not completely consistent with one another. Multiple molecular dynamics simulations were performed on various NS3 protease systems: free NS3 protease, NS3/4A, NS3/inhibitor, and NS3/4A/inhibitor complexes, to further unravel the mechanism of the activation of the NS3 protease. Simulation results suggest that the binding of NS4A induces a classic serine protease conformation of the catalytic triad of the NS3 protease. NS4A rearranges the secondary structure of both the N-terminus and catalytic site of the NS3 protease, reduces the mobility of the global structure of the NS3 protease, especially the catalytic site, and provides a rigid and tight structure, except for the S1 pocket, for the binding and hydrolysis of substrates. The binding of substrate also contributes to the activation of the NS3 protease by an induced-fit of the classic serine protease catalytic triad. However, the global structure of the NS3 protease is still loose and highly flexible without stable secondary structural elements, such as helix α0 at the N-terminus and helix α1 and ß-sheet E1-F1 at the catalytic site. The structure of the NS3 protease without NS4A is not suitable for the binding and hydrolysis of substrates.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Inibidores Enzimáticos/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas não Estruturais Virais/antagonistas & inibidores
8.
MAbs ; 13(1): 1980178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34662534

RESUMO

Antibodies and Fc fusion proteins are a rapidly growing class of pharmaceuticals. Cell culture and purification process development and operation require frequent measurement of product concentrations, commonly by complex enzyme-linked immunosorbent assay and high-performance liquid chromatography methods. Here we report a fast (<30 s), and simple antibody Fc assay based on mix-and-read reporting by fluorescence emission. A soluble fluorescein-labeled Fc-affinity reporter produced by standard peptide synthesis is mixed with an Fc-containing sample to produce an immediate shift in both fluorescence polarization and intensity, compatible with on- and at-line measurements and microbioreactor monitoring. We observed significant shifts in fluorescence intensity in Chinese hamster ovary cell culture fluid spiked with IgG and detected an adalimumab biosimilar down to 100 ng/mL (10-4 g/L), despite the interferents in the complex sample matrix. Neither the fluorescence polarization nor the fluorescence intensity assay is significantly affected by the addition of clarified lysate of 2 million CHO-k1 cells/mL, suggesting applicability even to cultures of low viability. Biochemical and molecular docking approaches suggest that the fluorescence intensity enhancement is caused by changes in the fluorophore's local microenvironment upon binding to IgG Fc, especially by interactions with Fc His433.Abbreviations: CCF: Cell Culture Fluid; CHO: Chinese Hamster Ovary cells; ELISA: Enzyme Linked Immunosorbent Assay; Fc: Fragment Crystallizable of antibody; HPLC: High-Performance Liquid Chromatography; HPßCD: hydroxypropyl-ß-cyclodextrin; IgG: ImmunoglobulinG; mAb: Monoclonal Antibody; PBS: Phosphate-Buffered Saline; PDB: Protein Data Bank; SpA: Staphylococcal protein A; SpG: Staphylococcal protein G.


Assuntos
Fragmentos Fc das Imunoglobulinas , Proteína Estafilocócica A , Animais , Células CHO , Cricetinae , Cricetulus , Fragmentos Fc das Imunoglobulinas/química , Simulação de Acoplamento Molecular
9.
Chem Biol Drug Des ; 95(4): 435-450, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030875

RESUMO

Frequent mutations in the Bcl-2 anti-apoptotic protein are often implicated in diffuse large B-cell lymphoma (DLBCL), a disease profoundly resistant to drugs. Bcl-2-competitive inhibitors, "BH3 mimetics," activate apoptosis by interfering with the interactions between pro-apoptotic BH3 domains and the hydrophobic groove of Bcl-2. The aim of our research is to determine the potential of DLBCL-linked N11Y mutation to facilitate resistance against a "BH3 mimetic" using molecular dynamics simulation. Binding free energy calculations suggest a significant decrease in the binding affinity in the mutant model. In-depth analysis of the models using residue interaction network, dynamic cross-correlation, and free energy landscape approaches reveal that the mutation modifies the conformations of key residues, thereby altering the shape of the hydrophobic groove. This subsequently changes the ligand orientation and counteracts the phenomenon of LB region unwinding, a crucial event observed in the wild-type model. Lowest frequency motions captured by principal component analysis reflect the stretching of the groove for efficient ligand accommodation in the wild-type complex but not in the mutant model. This is the first in silico study that unravels the mechanism of drug resistance induced by a Bcl-2 mutation, which could be of great relevance while designing and tailoring therapeutics.


Assuntos
Materiais Biomiméticos/química , Linfoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Fragmentos de Peptídeos/química , Mutação Puntual , Ligação Proteica , Domínios Proteicos , Termodinâmica
10.
ACS Chem Biol ; 15(11): 2916-2928, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33074669

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer. PDACs harbor oncogenic mutations in the KRAS gene, and ongoing efforts to directly target its mutant protein product to inhibit tumor growth are a priority not only in pancreatic cancer but in other malignancies such as lung and colorectal cancers where KRAS is also commonly mutated. An alternative strategy to directly targeting KRAS is to identify and target druggable receptors involved in dysregulated cancer hallmarks downstream of KRAS dysregulation. Liver X receptors (LXRs) are members of the nuclear receptor family of ligand-modulated transcription factors and are involved in the regulation of genes which function in key cancer-related processes, including cholesterol transport, lipid and glucose metabolism, and inflammatory and immune responses. Modulation of LXRs via small molecule ligands has emerged as a promising approach for directly targeting tumor cells or the stromal and immune cells within the tumor microenvironment. We have previously shown that only one of the two LXR subtypes (LXRß) is expressed in pancreatic cancer cells, and targeting LXR with available synthetic ligands blocked the proliferation of PDAC cells and tumor formation. In a screen of a focused library of drug-like small molecules predicted to dock in the ligand-binding pocket of LXRß, we identified two novel LXR ligands with more potent antitumor activity than current LXR agonists used in our published studies. Characterization of the two lead compounds (GAC0001E5 and GAC0003A4) indicates that they function as LXR inverse agonists which inhibit their transcriptional activity. Prolonged treatments with novel ligands further revealed their function as LXR "degraders" which significantly reduced LXR protein levels in all three PDAC cell lines tested. These findings support the utility of these novel inhibitors in basic research on ligand design, allosteric mechanisms, and LXR functions and their potential application as treatments for advanced pancreatic cancer and other recalcitrant malignancies.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Receptores X do Fígado/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Agonismo Inverso de Drogas , Humanos , Ligantes , Receptores X do Fígado/agonistas , Neoplasias Pancreáticas/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
11.
Proteins ; 75(2): 323-35, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18831046

RESUMO

The anthrax lethal factor is a zinc metalloprotease toxin secreted by Bacillus anthracis which cleaves at the N-terminal region of six mitogen activated protein kinase kinases (MEKs) in the cell. Additionally, it is known to cleave a nine residue peptide "LF10," 50-fold more efficiently than nine residues of MEK1. There is very little sequence similarity between the MEK N-termini, thus, it is unclear how the lethal factor can accommodate and cleave the diverse N-termini of the MEKs and whether there is a hierarchy in this interaction, as there is between LF10 and MEK1. To investigate this problem, we carried out multiple molecular dynamics simulations of the lethal factor with nine residues of each of the substrates. Our simulations reveal that like LF10, certain MEK substrates have residue compositions that favor beta-sheet formation with the lethal factor over others. The formation of this secondary structure maintains a catalytic conformation. Binding energetics using the MM-PBSA method was used to rank-order the substrates for their affinity to LF (K(M)). On the basis of the results, we conclude that the LF does not equally accommodate the MEK substrates and further predict that there will be differences between rates of cleavage among the nine residue MEK N-termini.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Bacillus anthracis/química , Simulação por Computador , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Especificidade por Substrato , Termodinâmica
12.
Comput Biol Chem ; 83: 107151, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31751879

RESUMO

The identification of RNA secondary structure has been an important tool for the characterization of nucleic acids. Computational structure prediction has been an effective approach toward this end, but improvement of established methods is often slow and reliant on redundant methodology. Here we present a novel consensus scoring approach, created to incorporate inputs from an array of established methods with the goal of producing outputs that contain mutual structures from these programs. This method is implemented in RNAdemocracy, a python program capable of competing with existing methods. This ensemble approach was limited by commonalities in established methods like parameter sourcing, which may lead to agreement error, an unavoidable outcome due to the limit of available RNA structure datasets. The modular construction of RNAdemocracy allows for its easy upgrading and customization to suit user's needs. RNAdemocracy, while capable of accurate predictions, is best suited to guide users to regions of the sequence space that exhibit agreement instead of a totally reliant predictor of structure. It is also capable of grading predictions for potential accuracy by providing a percentage of consensus between contributing methods in the final structure.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Software
13.
J Mol Graph Model ; 88: 104-120, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703686

RESUMO

Quorum sensing is a cell to cell signaling mechanism that enables them to coordinate their behaviors in a density-dependent manner mediated by small diffusible signaling molecules, which can control the virulence and biofilm gene expression in many Gram-negative and positive bacteria. N-acyl homoserine lactone acylase PvdQ from human opportunistic pathogen Pseudomonas aeruginosa is a quorum-quenching enzyme that can hydrolyze the amide bond of the quorum signaling N-acyl homoserine lactones (AHLs) thereby degrading the signaling molecules, turning off the biofilm phenotype and resulting in a reduction of bacterial virulence. Previous studies demonstrated that PvdQ has different preferences for N-acyl substrates with different acyl chain lengths and substituents. However, the substrate binding specificity determinants of the quorum-quenching enzyme PvdQ with the different bacterial ligands are unknown and unintuitive. Further, elucidation of these determinants can lead to mutants with efficiency and broader substrate promiscuity. To investigate this question, a computational study was carried out combining multiple molecular docking methods, molecular dynamics simulations, residue interaction network analysis, and binding free energy calculations. The main findings are: firstly, the results from pKa predictions support that the pKa of the N-terminus of Serß1 was depressed due to the surrounding residues. Multiple molecular docking studies provide useful information about the detailed binding modes and binding affinities. Secondly, 300 ns molecular dynamics simulations were carried out to analyze the overall molecular motions of substrate-bound and substrate-free PvdQ. The specific interactions between the active site of PvdQ and different ligands revealed the determinants for the preference among the ligands. A systematic comparison and analysis of the protein dynamic fingerprint of each complex demonstrated that binding of the most favorable ligand, C12-homoserine lactone (C12-HSL), reduced the global motions of the complex and maintained the correct arrangement of the catalytic site. Further, the residue interaction network analysis of each system illustrated that there are more communication contacts and pathways between the residues in the C12-HSL complex as compared to complexes with the other ligands. The binding of the C12-HSL ligand facilitates structural communication between the two knobs and the active site. While the binding of the other ligands tend to impair specific communication pathways between the two knobs and the active site, and lead to a catalytically inefficient state. Finally, simulation results from free energy landscape and binding free energy analysis revealed that the C12-HSL ligand has the lowest binding free energy and greater stability than the less favored ligands. Each of the following residues: Serß1, Hisß23, Pheß24, Metß30, Pheß32, Leuß50, Asnß57, Thrß69, Valß70, Trpß162, Trpß186, Asnß269, Argß297 and Leuα146, play different roles in substrate binding specificity. This is the first computational study that provides molecular information for structure-dynamic-function relationships of PvdQ with different ligands and demonstrates determinants of bacterial substrate binding specificity.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Percepção de Quorum , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
14.
J Mol Graph Model ; 86: 219-227, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388696

RESUMO

Experimental results for the antibody known as immunoglobulin G - IgG interacting with phenobarbital were obtained via atomic force microscopy (AFM) and thereafter investigated using computer simulation modeling tools. Using molecular dynamics simulation and docking calculations, the energetically stable configurations of an immobilized antibody over a silicon surface were searched. Six stable configurations of the immobilized antibody over the silicon nitride surface covered by linker molecules were found. Although, only three of them (P1, P2, P5) maintained the Fragment antigen binding available for antigen interaction. Therefore, these configurations were equilibrated after reaching 100 ns molecular dynamics trajectory. The average interaction energy between the surface and the immunoglobulin G - IgG antibody in the P1, P2 and P5 configurations were -62.4 ±â€¯2.4 kcal/mol; -54.3 ±â€¯5.7 kcal/mol, and -360.9 ±â€¯4.2 kcal/mol respectively. Phenobarbital was docked within the Fab domain of P1, P2, and P5 immobilized configurations and equilibrated with molecular dynamics for binding energy estimation. Then, steered molecular dynamics was performed to evaluate unbinding energy pathway between phenobarbital and IgG in each of the three-oriented IgG configurations. No significant differences were observed in the rupture force values (EP1 = 591 ±â€¯13 pN, EP2 = 605 ±â€¯18 pN, and EP5 = 610 ±â€¯45 pN). In comparison, the average AFM experimental results were (641.6 ±â€¯363.3 pN). Therefore, it is worth noting that P5 is the configuration with highest protein-surface interaction. Therefore, the force value calculated for the P5 orientation is statistically more favorable and it is the one to be compared to the experimental data. The agreement between experimental and theoretical results indicates a favorable presented for this study opening new perspectives for antigen-antibody evaluation.


Assuntos
Complexo Antígeno-Anticorpo/química , Modelos Teóricos , Algoritmos , Complexo Antígeno-Anticorpo/imunologia , Microscopia de Força Atômica , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
15.
Oncogenesis ; 7(1): 5, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29358623

RESUMO

The oncogenic epidermal growth factor receptor (EGFR) is commonly overexpressed in solid cancers. The tyrosine kinase activity of EGFR has been a major therapeutic target for cancer; however, the efficacy of EGFR tyrosine kinase inhibitors to treat cancers has been challenged by innate and acquired resistance at the clinic. Accumulating evidence suggests that EGFR possesses kinase-independent pro-survival functions, and that cancer cells are more vulnerable to reduction of EGFR protein than to inhibition of its kinase activity. The molecular mechanism underlying loss-of-EGFR-induced cell death remains largely unknown. In this study, we show that, unlike inhibiting EGFR kinase activity that is known to induce pro-survival non-selective autophagy, downregulating EGFR protein, either by siRNA, or by a synthetic EGFR-downregulating peptide (Herdegradin), kills prostate and ovarian cancer cells via selective mitophagy by activating the mTORC2/Akt axis. Furthermore, Herdegradin induced mitophagy and inhibited the growth of orthotopic ovarian cancers in mice. This study identifies anti-mitophagy as a kinase-independent function of EGFR, reveals a novel function of mTORC2/Akt axis in promoting mitophagy in cancer cells, and offers a novel approach for pharmacological downregulation of EGFR protein as a potential treatment for EGFR-positive cancers.

16.
Nucleic Acids Res ; 33(15): 4865-73, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16141194

RESUMO

The mechanism by which HIV-1 reverse transcriptase (HIV-RT) discriminates between the correct and incorrect nucleotide is not clearly understood. Chemically modified nucleotides containing 1-aminonaphthalene-5-sulfonate (ANS) attached to their gamma-phosphate were synthesized and used to probe nucleotide selection by this error prone polymerase. Primer extension reactions provide direct evidence that the polymerase is able to incorporate the gamma-modified nucleotides. Forward mutation assays reveal a 6-fold reduction in the mutational frequency with the modified nucleotides, and specific base substitutions are dramatically reduced or eliminated. Molecular modeling illustrates potential interactions between critical residues within the polymerase active site and the modified nucleotides. Our data demonstrate that the fidelity of reverse transcriptase is improved using modified nucleotides, and we suggest that specific modifications to the gamma-phosphate may be useful in designing new antiviral therapeutics or, more generally, as a tool for defining the structural role that the polymerase active site has on nucleotide selectivity.


Assuntos
Desoxirribonucleotídeos/química , Transcriptase Reversa do HIV/química , Sítios de Ligação , Desoxirribonucleotídeos/metabolismo , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Mutação , Naftalenossulfonatos/química , Fosfatos/química
17.
J Med Chem ; 49(5): 1684-92, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509584

RESUMO

We extended the previously described dynamic pharmacophore model studies of HIV-1 integrase (IN) by considering more key residues in the active site, including Mg2+. First, we applied a Monte Carlo sampling method to map the complementary features of the IN binding surface. Two types of dynamic pharmacophore models were generated. One considers Mg2+ as part of the IN and therefore as an excluded volume, and the other treats Mg2+ as a positively charged feature, representing a new type of pharmacophore model aimed to identify compounds potentially preventing Mg2+ binding. Second, we validated the models with 385 known active (IC50 < 20 microM) and 235 (IC50 > 100 microM) inactive IN inhibitors. Third, we used the derived models to screen our small molecule database. Twenty-two structurally novel compounds were tested in an in vitro assay specific for IN, and two of them showed IC50 < or = 10 microM for strand transfer reaction.


Assuntos
Inibidores de Integrase de HIV/química , Integrase de HIV/química , Modelos Moleculares , Algoritmos , Antraquinonas/química , Sítios de Ligação , Cátions Bivalentes/química , Bases de Dados Factuais , Magnésio/química , Método de Monte Carlo , Ligação Proteica , Pirazóis/química
18.
Mutat Res Rev Mutat Res ; 769: 1-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27543313

RESUMO

Mutations in the translocated BCL2 gene are often detected in diffuse large B-cell lymphomas (DLBCLs), indicating both their significance and pervasiveness. Large series genome sequencing of more than 200 DLBCLs has identified frequent BCL2 mutations clustered in the exons coding for the BH4 domain and the folded loop domain (FLD) of the protein. However, BCL2 mutations are mostly contemplated to represent bystander events with negligible functional impact on the pathogenesis of DLBCL. BCL2 arbitrates apoptosis through a classic interaction between its hydrophobic groove forming BH1-3 domains and the BH3 domain of pro-apoptotic members of the BCL2 family. The effects of mutations are mainly determined by the ability of the mutated BCL2 to mediate apoptosis by this inter-member protein binding. Nevertheless, BCL2 regulates diverse non-canonical pathways that are unlikely to be explained by canonical interactions. In this review, first, we identify recurrent missense mutations in the BH4 domain and the FLD reported in independent lymphoma sequencing studies. Second, we discuss the probable consequences of mutations on the binding ability of BCL2 to non-BCL2 family member proteins crucial for 1) maintaining mitochondrial energetics and calcium hemostasis such as VDAC, IP3R, and RyR and 2) oncogenic pathways implicated in the acquisition of the 'hallmarks of cancer' such as SOD, Raf-1, NFAT, p53, HIF-1α, and gelsolin. The study also highlights the likely ramifications of mutations on binding of BCL2 antagonists and BH3 profiling. Based on our analysis, we believe that an in-depth focus on BCL2 interactions mediated by these domains is warranted to elucidate the functional significance of missense mutations in DLBCL. In summary, we provide an extensive overview of the pleiotropic functions of BCL2 mediated by its physical binding interaction with other proteins and the various ways BCL2 mutations would affect the normal function of the cell leading to the development of DLBCL.


Assuntos
Linfoma/genética , Linfoma/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Proteínas de Transporte , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma/patologia , Redes e Vias Metabólicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estadiamento de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/química , Transdução de Sinais , Relação Estrutura-Atividade
19.
PLoS One ; 11(11): e0166477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829022

RESUMO

Cholera toxin (CT) is an AB-type protein toxin that contains a catalytic A1 subunit, an A2 linker, and a cell-binding B homopentamer. The CT holotoxin is released into the extracellular environment, but CTA1 attacks a target within the cytosol of a host cell. We recently reported that grape extract confers substantial resistance to CT. Here, we used a cell culture system to identify twelve individual phenolic compounds from grape extract that inhibit CT. Additional studies determined the mechanism of inhibition for a subset of the compounds: two inhibited CT binding to the cell surface and even stripped CT from the plasma membrane of a target cell; two inhibited the enzymatic activity of CTA1; and four blocked cytosolic toxin activity without directly affecting the enzymatic function of CTA1. Individual polyphenolic compounds from grape extract could also generate cellular resistance to diphtheria toxin, exotoxin A, and ricin. We have thus identified individual toxin inhibitors from grape extract and some of their mechanisms of inhibition against CT.


Assuntos
Biflavonoides/farmacologia , Catequina/análogos & derivados , Toxina da Cólera/antagonistas & inibidores , Fenóis/farmacologia , Proantocianidinas/farmacologia , ADP Ribose Transferases/antagonistas & inibidores , Animais , Toxinas Bacterianas/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Células CHO , Catequina/farmacologia , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Toxina da Cólera/metabolismo , Cricetulus , Toxina Diftérica/antagonistas & inibidores , Exotoxinas/antagonistas & inibidores , Frutas/química , Extrato de Sementes de Uva/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Ricina/antagonistas & inibidores , Células Vero , Fatores de Virulência/antagonistas & inibidores , Vitis/química , Exotoxina A de Pseudomonas aeruginosa
20.
Proteins ; 59(4): 723-41, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15815973

RESUMO

HIV-1 IN is an essential enzyme for viral replication and an interesting target for the design of new pharmaceuticals for use in multidrug therapy of AIDS. L-731,988 is one of the most active molecules of the class of beta-diketo acids. Individual and combined mutations of HIV-1 IN at residues T66, S153, and M154 confer important degrees of resistance to one or more inhibitors belonging to this class. In an effort to understand the molecular mechanism of the resistance of T66I/M154I IN to the inhibitor L-731,988 and its specific binding modes, we have carried out docking studies, explicit solvent MD simulations, and binding free energy calculations. The inhibitor was docked against different protein conformations chosen from prior MD trajectories, resulting in 2 major orientations within the active site. MD simulations have been carried out for the T66I/M154I DM IN, DM IN in complex with L-731,988 in 2 different orientations, and 1QS4 IN in complex with L-731,988. The results of these simulations show a similar dynamical behavior between T66I/M154I IN alone and in complex with L-731,988, while significant differences are observed in the mobility of the IN catalytic loop (residues 138-149). Water molecules bridging the inhibitor to residues from the active site have been identified, and residue Gln62 has been found to play an important role in the interactions between the inhibitor and the protein. This work provides information about the binding modes of L-731,988, as well as insight into the mechanism of inhibitor-resistance in HIV-1 integrase.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Integrase de HIV/metabolismo , HIV-1/enzimologia , Cetoácidos/farmacologia , Substituição de Aminoácidos , Sítios de Ligação , Integrase de HIV/química , Integrase de HIV/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Cinética , Mutagênese Sítio-Dirigida , Solventes , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA