Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20568-20573, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548387

RESUMO

Horizontal gene transfer (HGT) plays an important role in bacterial evolution and serves as a driving force for bacterial diversity and versatility. HGT events often involve mobile genetic elements like plasmids, which can promote their own dissemination by associating with adaptive traits in the gene pool of the so-called mobilome. Novel traits that evolve through HGT can therefore lead to the exploitation of new ecological niches, prompting an adaptive radiation of bacterial species. In this study, we present phylogenetic, biogeographic, and functional analyses of a previously unrecognized RepL-type plasmid found in diverse members of the marine Roseobacter group across the globe. Noteworthy, 100% identical plasmids were detected in phylogenetically and geographically distant bacteria, revealing a so-far overlooked, but environmentally highly relevant vector for HGT. The genomic and functional characterization of this plasmid showed a completely conserved backbone dedicated to replication, stability, and mobilization as well as an interchangeable gene cassette with highly diverse, but recurring motifs. The majority of the latter appear to be involved in mechanisms coping with toxins and/or pollutants in the marine environment. Furthermore, we provide experimental evidence that the plasmid has the potential to be transmitted across bacterial orders, thereby increasing our understanding of evolution and microbial niche adaptation in the environment.


Assuntos
Proteínas de Bactérias/genética , Meio Ambiente , Transferência Genética Horizontal , Plasmídeos/genética , Roseobacter/genética , Evolução Molecular , Genoma Bacteriano , Geografia , Filogenia , Recombinação Genética , Roseobacter/classificação
2.
Naturwissenschaften ; 108(4): 29, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181110

RESUMO

Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly determined the community compositions of algae and other micro-eukaryotes. Therefore, as expected, the frog clutch-associated communities formed clearly distinct clusters. Clutch-associated communities in our study were structured by a plethora of not only green algae, but also diatoms and other ochrophytes. The most abundant operational taxonomic units (OTUs) in clutch samples were taxa from Chlamydomonas, Oophila, but also from Nitzschia and other ochrophytes. Sequences of Oophila "Clade B" were found exclusively in clutches. Based on additional phylogenetic analyses of 18S rDNA and of a matrix of 18 nuclear genes derived from transcriptomes, we confirmed in our samples the existence of two distinct clades of green algae assigned to Oophila in past studies. We hypothesize that "Clade B" algae correspond to the true Oophila, whereas "Clade A" algae are a series of Chlorococcum species that, along with other green algae, ochrophytes and protists, colonize amphibian clutches opportunistically and are often cultured from clutch samples due to their robust growth performance. The clutch-associated communities were subject to filtering by sampling location, suggesting that the taxa colonizing amphibian clutches can drastically differ depending on environmental conditions.


Assuntos
Clorófitas , Eucariotos , Animais , Clorófitas/genética , Código de Barras de DNA Taxonômico , Filogenia , Ranidae
3.
Mol Phylogenet Evol ; 150: 106850, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32438044

RESUMO

Gene duplication and horizontal gene transfer (HGT) are two important but different forces for adaptive genome evolution. In eukaryotic organisms, gene duplication is considered to play a more important evolutionary role than HGT. However, certain fungal lineages have developed highly efficient mechanisms that avoid the occurrence of duplicated gene sequences within their genomes. While these mechanisms likely originated as a defense against harmful mobile genetic elements, they come with an evolutionary cost. A prominent example for a genome defense system is the RIP mechanism of the ascomycete fungus Neurospora crassa, which efficiently prevents sequence duplication within the genome and functional redundancy of the subsequent paralogs. Despite this tight control, the fungus possesses two functionally redundant sterol C-5 desaturase enzymes, ERG-10a and ERG-10b, that catalyze the same step during ergosterol biosynthesis. In this study, we addressed this conundrum by phylogenetic analysis of the two proteins and supporting topology tests. We obtained evidence that a primary HGT of a sterol C-5 desaturase gene from Tremellales (an order of Basidiomycota) into a representative of the Pezizomycotina (a subphylum of Ascomycota) is the origin of the ERG-10b sequence. The reconstructed phylogenies suggest that this HGT event was followed by multiple HGT events among other members of the Pezizomycotina, thereby generating a diverse group with members in the four classes Sordariomycetes, Xylonomycetes, Eurotiomycetes and Dothideomycetes, which all harbor the second sterol C-5 desaturase or maintained in some cases only the ERG-10b version of this enzyme. These results furnish an example for a gene present in numerous ascomycetous fungi but primarily acquired by an ancestral HGT event from another fungal phylum. Furthermore, these data indicate that HGT represents one mechanism to generate functional redundancy in organisms with a strict avoidance of gene duplications.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Transferência Genética Horizontal/genética , Oxirredutases/genética , Ascomicetos/enzimologia , Basidiomycota/enzimologia , Bases de Dados Genéticas , Evolução Molecular , Oxirredutases/classificação , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética
4.
Proc Natl Acad Sci U S A ; 112(7): E693-9, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646484

RESUMO

The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Eucariotos , Bactérias/classificação , Bactérias/genética , Conjuntos de Dados como Assunto , Genes Bacterianos , Filogenia
5.
J Exp Zool B Mol Dev Evol ; 328(7): 685-696, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29059507

RESUMO

Non-visual opsins were discovered in the early 1990s. These genes play roles in circadian rhythm in mammals, seasonal reproduction in birds, light avoidance in amphibian larvae, and neural development in fish. However, the interpretation of such studies and the success of future work are compromised by the fact that non-visual opsin repertoires have not been properly characterized in any of these lineages. Here, we show that non-visual opsins from tetrapods and ray-finned fish are distributed among 18 monophyletic subfamilies. An amphibian sequence occurs in every subfamily, whereas mammalian orthologs occur in only seven. Species in the major ray-finned fish lineages, Holostei, Osteoglossomorpha, Otomorpha, Protacanthopterygii, and Neoteleostei, have large numbers of non-visual opsins (22-32 genes) as a result of gene duplication events including, but not limited to, the teleost genome duplication (TGD). In contrast to visual opsins, where lineage-specific duplication is common, the ray-finned fish non-visual opsin repertoire appears to have stabilized shortly after the TGD event and consequently even distantly related species have repertoires of similar size and composition. Most non-visual opsins have been named without the benefit of a phylogenetic perspective and, accordingly, major revisions are proposed.


Assuntos
Evolução Biológica , Peixes/genética , Opsinas/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Opsinas/genética
6.
Nature ; 470(7333): 255-8, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21307940

RESUMO

Xenoturbellida and Acoelomorpha are marine worms with contentious ancestry. Both were originally associated with the flatworms (Platyhelminthes), but molecular data have revised their phylogenetic positions, generally linking Xenoturbellida to the deuterostomes and positioning the Acoelomorpha as the most basally branching bilaterian group(s). Recent phylogenomic data suggested that Xenoturbellida and Acoelomorpha are sister taxa and together constitute an early branch of Bilateria. Here we assemble three independent data sets-mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions and new microRNA (miRNA) complements-and show that the position of Acoelomorpha is strongly affected by a long-branch attraction (LBA) artefact. When we minimize LBA we find consistent support for a position of both acoelomorphs and Xenoturbella within the deuterostomes. The most likely phylogeny links Xenoturbella and Acoelomorpha in a clade we call Xenacoelomorpha. The Xenacoelomorpha is the sister group of the Ambulacraria (hemichordates and echinoderms). We show that analyses of miRNA complements have been affected by character loss in the acoels and that both groups possess one miRNA and the gene Rsb66 otherwise specific to deuterostomes. In addition, Xenoturbella shares one miRNA with the ambulacrarians, and two with the acoels. This phylogeny makes sense of the shared characteristics of Xenoturbellida and Acoelomorpha, such as ciliary ultrastructure and diffuse nervous system, and implies the loss of various deuterostome characters in the Xenacoelomorpha including coelomic cavities, through gut and gill slits.


Assuntos
Organismos Aquáticos/classificação , Filogenia , Canal Anal , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Teorema de Bayes , Etiquetas de Sequências Expressas , Brânquias , MicroRNAs/genética , Proteínas Mitocondriais/genética
7.
Microorganisms ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37894052

RESUMO

In the pursuit of cultivating anaerobic anoxygenic phototrophs with unusual absorbance spectra, a purple sulfur bacterium was isolated from the shoreline of Baltrum, a North Sea island of Germany. It was designated strain 970, due to a predominant light harvesting complex (LH) absorption maximum at 963-966 nm, which represents the furthest infrared-shift documented for such complexes containing bacteriochlorophyll a. A polyphasic approach to bacterial systematics was performed, comparing genomic, biochemical, and physiological properties. Strain 970 is related to Thiorhodovibrio winogradskyi DSM 6702T by 26.5, 81.9, and 98.0% similarity via dDDH, ANI, and 16S rRNA gene comparisons, respectively. The photosynthetic properties of strain 970 were unlike other Thiorhodovibrio spp., which contained typical LH absorbing characteristics of 800-870 nm, as well as a newly discovered absorption band at 908 nm. Strain 970 also had a different photosynthetic operon composition. Upon genomic comparisons with the original Thiorhodovibrio strains DSM 6702T and strain 06511, the latter was found to be divergent, with 25.3, 79.1, and 97.5% similarity via dDDH, ANI, and 16S rRNA gene homology to Trv. winogradskyi, respectively. Strain 06511 (=DSM 116345T) is thereby described as Thiorhodovibrio litoralis sp. nov., and the unique strain 970 (=DSM 111777T) as Thiorhodovibrio frisius sp. nov.

8.
Mol Biol Evol ; 28(3): 1229-40, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21097494

RESUMO

Large extrachromosomal elements are widespread among Alphaproteobacteria, but it is unclear how up to a dozen low-copy plasmids can stably coexist within the same cell. We systematically analyzed the distribution of different replicons in about 40 completely sequenced genomes of the Roseobacter clade (Rhodobacterales) and surprisingly identified a novel plasmid replicon type. The conserved replication module comprises the characteristic partitioning operon (parAB) and a hitherto unknown replicase. The latter shows a weak homology to the chromosomal replication initiator DnaA and was accordingly named "DnaA-like." Phylogenetic analyses of the adjacent parAB genes document a common ancestry with repA- and repB-type plasmids and moreover indicate the presence of two dnaA-like compatibility groups. This conclusion is supported by conserved palindrome sequences within the replication module that probably represent crucial centromeric anchors for plasmid partitioning. The functionality of dnaA-like replicons was proven by transformation experiments in Phaeobacter gallaeciensis BS107 (DSM 17395). This Roseobacter strain furthermore allows the phenotypical monitoring of plasmid incompatibility, based on a 262-kb dnaA-like replicon required for the brown pigmentation of the bacterium. Uptake of an incompatible construct induces its loss, hence resulting in white colonies. Accordingly, we could substantiate the in silico predictions about stable maintenance of dnaA-like plasmids and thereby functionally validate our approach of plasmid classification based on phylogenetic analyses.


Assuntos
DNA Helicases/genética , DNA Bacteriano , Plasmídeos , Rhodobacteraceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Contagem de Colônia Microbiana , DNA Helicases/metabolismo , Replicação do DNA , Evolução Molecular , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Óperon , Filogenia , Plasmídeos/genética , Replicon , Transformação Bacteriana
9.
Environ Microbiol ; 14(10): 2661-72, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22732061

RESUMO

Aerobic anoxygenic photosynthesis providing additional ATP for a photoheterotrophic lifestyle is characteristic for several representatives of the marine Roseobacter clade. The patchy distribution of photosynthesis gene clusters (PGCs) within this lineage probably results from horizontal transfers and this explanation is supported by two cases of plasmid-located PGCs. In this study sequencing of the three Sulfitobacter guttiformis plasmids (pSG4, pSG53, pSG118) was initiated with the objective to analyse the 118 kb-sized photosynthetic replicon, but our annotation revealed several additional important traits including key genes of the primary metabolism. The comparison of the two photosynthesis plasmids from S. guttiformis and Roseobacter litoralis showed that their replication modules are located at precisely the same position within the 45 kb-sized PGC. However, comprehensive phylogenetic analyses of the non-homologous replicases (RepB-III, DnaA-like I) and the two ParAB partitioning proteins unequivocally document an independent origin of their extrachromosomal replicons. The analogous positioning within the two photosynthesis super-operons can be explained by a two-step recombination scenario and seems to be the ultimate result of stabilizing selection. Our exemplary analyses of 'pink' plasmids document that chromosomal outsourcing is a common phenomenon in the Roseobacter clade and subsequent horizontal exchanges offer rapid access to the marine pan-genome.


Assuntos
Fotossíntese/genética , Filogenia , Plasmídeos/genética , Roseobacter/classificação , Roseobacter/genética , Replicação do DNA , Ordem dos Genes , Dados de Sequência Molecular , Óperon/genética , Pigmentos Biológicos , Replicon/genética , Roseobacter/metabolismo
10.
Nature ; 439(7079): 965-8, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16495997

RESUMO

Tunicates or urochordates (appendicularians, salps and sea squirts), cephalochordates (lancelets) and vertebrates (including lamprey and hagfish) constitute the three extant groups of chordate animals. Traditionally, cephalochordates are considered as the closest living relatives of vertebrates, with tunicates representing the earliest chordate lineage. This view is mainly justified by overall morphological similarities and an apparently increased complexity in cephalochordates and vertebrates relative to tunicates. Despite their critical importance for understanding the origins of vertebrates, phylogenetic studies of chordate relationships have provided equivocal results. Taking advantage of the genome sequencing of the appendicularian Oikopleura dioica, we assembled a phylogenomic data set of 146 nuclear genes (33,800 unambiguously aligned amino acids) from 14 deuterostomes and 24 other slowly evolving species as an outgroup. Here we show that phylogenetic analyses of this data set provide compelling evidence that tunicates, and not cephalochordates, represent the closest living relatives of vertebrates. Chordate monophyly remains uncertain because cephalochordates, albeit with a non-significant statistical support, surprisingly grouped with echinoderms, a hypothesis that needs to be tested with additional data. This new phylogenetic scheme prompts a reappraisal of both morphological and palaeontological data and has important implications for the interpretation of developmental and genomic studies in which tunicates and cephalochordates are used as model animals.


Assuntos
Filogenia , Urocordados/classificação , Vertebrados/classificação , Animais , Evolução Molecular , Funções Verossimilhança , Urocordados/genética , Urocordados/fisiologia , Vertebrados/genética
11.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35254236

RESUMO

The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.


Assuntos
Dinoflagellida , Roseobacter , Dinoflagellida/genética , Plasmídeos/genética , Replicon , Rhodobacteraceae , Roseobacter/genética
12.
mSystems ; 7(4): e0026422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920548

RESUMO

The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell's regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the "plasmid paradox."


Assuntos
Rhodobacteraceae , Plasmídeos/genética , Rhodobacteraceae/genética , Replicon/genética , Expressão Gênica
13.
J Bacteriol ; 193(23): 6760-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965568

RESUMO

Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∼59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∼105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict.


Assuntos
Azoarcus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cicloexanonas/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sequência de Aminoácidos , Azoarcus/química , Azoarcus/genética , Azoarcus/metabolismo , Proteínas de Bactérias/genética , Cicloexanonas/química , Sistema Enzimático do Citocromo P-450/genética , Desnitrificação , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato , Tiamina Pirofosfato/metabolismo
14.
BMC Evol Biol ; 11: 104, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21501468

RESUMO

BACKGROUND: The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. RESULTS: Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa (Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. CONCLUSIONS: Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the conquest of land. Clearly, the biology of the Zygnematales will receive renewed interest in the future.


Assuntos
Clorófitas/genética , Evolução Molecular , Plantas/genética , Clorófitas/classificação , Dados de Sequência Molecular , Filogenia , Plantas/classificação
15.
Mol Biol Evol ; 27(2): 371-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19822637

RESUMO

Heterotachy, the variation of substitution rate at a site across time, is a prevalent phenomenon in nucleotide and amino acid alignments, which may mislead probabilistic-based phylogenetic inferences. The covarion model is a special case of heterotachy, in which sites change between the "ON" state (allowing substitutions according to any particular model of sequence evolution) and the "OFF" state (prohibiting substitutions). In current implementations, the switch rates between ON and OFF states are homogeneous across sites, a hypothesis that has never been tested. In this study, we developed an infinite mixture model, called the covarion mixture (CM) model, which allows the covarion parameters to vary across sites, controlled by a Dirichlet process prior. Moreover, we combine the CM model with other approaches. We use a second independent Dirichlet process that models the heterogeneities of amino acid equilibrium frequencies across sites, known as the CAT model, and general rate-across-site heterogeneity is modeled by a gamma distribution. The application of the CM model to several large alignments demonstrates that the covarion parameters are significantly heterogeneous across sites. We describe posterior predictive discrepancy tests and use these to demonstrate the importance of these different elements of the models.


Assuntos
Simulação por Computador , Modelos Genéticos , Algoritmos , Evolução Molecular , Cadeias de Markov , Filogenia
16.
Mol Biol Evol ; 27(7): 1698-709, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20194427

RESUMO

According to the chromalveolate hypothesis (Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347-366), the four eukaryotic groups with chlorophyll c-containing plastids originate from a single photosynthetic ancestor, which acquired its plastids by secondary endosymbiosis with a red alga. So far, molecular phylogenies have failed to either support or disprove this view. Here, we devise a phylogenomic falsification of the chromalveolate hypothesis that estimates signal strength across the three genomic compartments: If the four chlorophyll c-containing lineages indeed derive from a single photosynthetic ancestor, then similar amounts of plastid, mitochondrial, and nuclear sequences should allow to recover their monophyly. Our results refute this prediction, with statistical support levels too different to be explained by evolutionary rate variation, phylogenetic artifacts, or endosymbiotic gene transfer. Therefore, we reject the chromalveolate hypothesis as falsified in favor of more complex evolutionary scenarios involving multiple higher order eukaryote-eukaryote endosymbioses.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Genômica , Filogenia , Plastídeos/genética , Evolução Molecular , Simbiose
17.
Proc Biol Sci ; 278(1703): 298-306, 2011 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20702459

RESUMO

While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes-chelicerates, myriapods, crustaceans and hexapods-are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree-reconstruction artefacts.


Assuntos
Artrópodes/genética , Genômica , MicroRNAs/química , Filogenia , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Classificação/métodos
18.
Genes (Basel) ; 12(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803228

RESUMO

Cyanobacteria represent one of the most important and diverse lineages of prokaryotes with an unparalleled morphological diversity ranging from unicellular cocci and characteristic colony-formers to multicellular filamentous strains with different cell types. Sequencing of more than 1200 available reference genomes was mainly driven by their ecological relevance (Prochlorococcus, Synechococcus), toxicity (Microcystis) and the availability of axenic strains. In the current study three slowly growing non-axenic cyanobacteria with a distant phylogenetic positioning were selected for metagenome sequencing in order to (i) investigate their genomes and to (ii) uncover the diversity of associated heterotrophs. High-throughput Illumina sequencing, metagenomic assembly and binning allowed us to establish nearly complete high-quality draft genomes of all three cyanobacteria and to determine their phylogenetic position. The cyanosphere of the limnic isolates comprises up to 40 heterotrophic bacteria that likely coexisted for several decades, and it is dominated by Alphaproteobacteria and Bacteriodetes. The diagnostic marker protein RpoB ensured in combination with our novel taxonomic assessment via BLASTN-dependent text-mining a reliable classification of the metagenome assembled genomes (MAGs). The detection of one new family and more than a dozen genera of uncultivated heterotrophic bacteria illustrates that non-axenic cyanobacteria are treasure troves of hidden microbial diversity.


Assuntos
Cianobactérias/genética , Metagenoma/genética , Genoma Bacteriano/genética , Metagenômica/métodos , Microbiota/genética , Filogenia
19.
Syst Appl Microbiol ; 44(1): 126165, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33360413

RESUMO

The family Rhizobiaceae includes many genera of soil bacteria, often isolated for their association with plants. Herein, we investigate the genomic diversity of a group of Rhizobium species and unclassified strains isolated from atypical environments, including seawater, rock matrix or polluted soil. Based on whole-genome similarity and core genome phylogeny, we show that this group corresponds to the genus Pseudorhizobium. We thus reclassify Rhizobium halotolerans, R. marinum, R. flavum and R. endolithicum as P. halotolerans sp. nov., P. marinum comb. nov., P. flavum comb. nov. and P. endolithicum comb. nov., respectively, and show that P. pelagicum is a synonym of P. marinum. We also delineate a new chemolithoautotroph species, P. banfieldiae sp. nov., whose type strain is NT-26T (=DSM 106348T=CFBP 8663T). This genome-based classification was supported by a chemotaxonomic comparison, with increasing taxonomic resolution provided by fatty acid, protein and metabolic profiles. In addition, we used a phylogenetic approach to infer scenarios of duplication, horizontal transfer and loss for all genes in the Pseudorhizobium pangenome. We thus identify the key functions associated with the diversification of each species and higher clades, shedding light on the mechanisms of adaptation to their respective ecological niches. Respiratory proteins acquired at the origin of Pseudorhizobium were combined with clade-specific genes to enable different strategies for detoxification and nutrition in harsh, nutrient-poor environments.


Assuntos
Ambientes Extremos , Filogenia , Rhizobiaceae/classificação , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano , Hibridização de Ácido Nucleico , Rhizobium , Análise de Sequência de DNA
20.
BMC Evol Biol ; 10: 233, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20673336

RESUMO

BACKGROUND: The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. RESULTS: In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. CONCLUSIONS: The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.


Assuntos
Diatomáceas/genética , Evolução Molecular , Complexos de Proteínas Captadores de Luz/genética , Plantas/genética , Rodófitas/genética , Sequência de Aminoácidos , Bases de Dados Genéticas , Complexos de Proteínas Captadores de Luz/classificação , Dados de Sequência Molecular , Família Multigênica , Complexo de Proteína do Fotossistema II/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA