Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 142(2): 363-74, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25564624

RESUMO

Epithelial remodelling is an essential mechanism for organogenesis, during which cells change shape and position while maintaining contact with each other. Adherens junctions (AJs) mediate stable intercellular cohesion but must be actively reorganised to allow morphogenesis. Vesicle trafficking and the microtubule (MT) cytoskeleton contribute to regulating AJs but their interrelationship remains elusive. We carried out a detailed analysis of the role of MTs in cell remodelling during formation of the tracheal system in the Drosophila embryo. Induction of MT depolymerisation specifically in tracheal cells shows that MTs are essential during a specific time frame of tracheal cell elongation while the branch extends. In the absence of MTs, one tracheal cell per branch overelongates, ultimately leading to branch break. Three-dimensional quantifications revealed that MTs are crucial to sustain E-Cadherin (Shotgun) and Par-3 (Bazooka) levels at AJs. Maintaining E-Cadherin/Par-3 levels at the apical domain requires de novo synthesis rather than internalisation and recycling from and to the apical plasma membrane. However, apical targeting of E-Cadherin and Par-3 requires functional recycling endosomes, suggesting an intermediate role for this compartment in targeting de novo synthesized E-Cadherin to the plasma membrane. We demonstrate that apical enrichment of recycling endosomes is dependent on the MT motor Dynein and essential for the function of this vesicular compartment. In addition, we establish that E-Cadherin dynamics and MT requirement differ in remodelling tracheal cells versus planar epithelial cells. Altogether, our results uncover an MT-Dynein-dependent apical restriction of recycling endosomes that controls adhesion by sustaining Par-3 and E-Cadherin levels at AJs during morphogenesis.


Assuntos
Junções Aderentes/fisiologia , Drosophila/embriologia , Endossomos/fisiologia , Microtúbulos/fisiologia , Organogênese/fisiologia , Traqueia/embriologia , Animais , Caderinas/metabolismo , Dineínas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica
2.
Dev Cell ; 7(6): 885-95, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15572130

RESUMO

Many different intercellular signaling pathways are known but, for most, it is unclear whether they can generate oscillating cell behaviors. Here we use time-lapse analysis of Drosophila embryogenesis to show that oenocytes delaminate from the ectoderm in discrete bursts of three. This pulsatile process has a 1 hour period, occurs without cell division, and requires a localized EGF receptor (EGFR) response. High-threshold EGFR targets are sequentially activated in rings of three cells, prefiguring the temporal pattern of delamination. Surprisingly, widespread misexpression of the relevant activating ligand, Spitz, is compatible with robust delamination pulses. Moreover, although Spitz ligand becomes limiting after only two pulses, artificially prolonging its secretion generates up to six additional cycles, revealing a rhythmic underlying mechanism. These findings illustrate how intercellular signaling and cell movements can generate multiple cycles of a cell behavior, despite individual cells experiencing only one cycle of receptor activation.


Assuntos
Drosophila/embriologia , Ectoderma/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Divisão Celular , Proteínas de Drosophila/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas do Olho/metabolismo , Imuno-Histoquímica , Laminas/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Receptores Notch , Fatores de Tempo
3.
Dev Cell ; 18(5): 790-801, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20493812

RESUMO

Microtubules (MTs) are essential for many cell features, such as polarity, motility, shape, and vesicle trafficking. Therefore, in a multicellular organism, their organization differs between cell types and during development; however, the control of this process remains elusive. Here, we show that during Drosophila tracheal morphogenesis, MT reorganization is coupled to relocalization of the microtubule organizing centers (MTOC) components from the centrosome to the apical cell domain from where MTs then grow. We reveal that this process is controlled by the trachealess patterning gene in a two-step mechanism. MTOC components are first released from the centrosome by the activity of the MT-severing protein Spastin, and then anchored apically through the transmembrane protein Piopio. We further show that these changes are essential for tracheal development, thus stressing the functional relevance of MT reorganization for morphogenesis.


Assuntos
Drosophila/crescimento & desenvolvimento , Microtúbulos/fisiologia , Traqueia/crescimento & desenvolvimento , Adenosina Trifosfatases/fisiologia , Animais , Proteínas de Transporte/fisiologia , Diferenciação Celular , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Centríolos/fisiologia , Centríolos/ultraestrutura , Centrossomo/fisiologia , Drosophila/embriologia , Proteínas de Drosophila/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Morfogênese/fisiologia , Traqueia/citologia
4.
Genes Dev ; 20(13): 1817-28, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16818611

RESUMO

A major issue in morphogenesis is to understand how the activity of genes specifying cell fate affects cytoskeletal components that modify cell shape and induce cell movements. Here, we approach this question by investigating how a group of cells from an epithelial sheet initiate invagination to ultimately form the Drosophila tracheal tubes. We describe tracheal cell behavior at invagination and show that it is associated with, and requires, a distinct recruitment of Myosin II to the apical surface of cells at the invaginating edge. We show that this process is achieved by the activity of crossveinless-c, a gene coding for a RhoGAP and whose specific transcriptional activation in the tracheal cells is triggered by both the trachealess patterning gene and the EGF Receptor (EGFR) signaling pathway. Our results identify a developmental pathway linking cell fate genes and cell signaling pathways to intracellular modifications during tracheal cell invagination.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Receptores ErbB/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Transcrição/fisiologia , Animais , Forma Celular , Drosophila/embriologia , Morfogênese , Miosina Tipo II/fisiologia , Sistema Respiratório/embriologia , Transdução de Sinais , Ativação Transcricional
5.
Development ; 129(12): 2957-63, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12050142

RESUMO

The Hox/homeotic genes encode transcription factors that generate segmental diversity during Drosophila development. At the level of the whole animal, they are believed to carry out this role by regulating a large number of downstream genes. Here we address the unresolved issue of how many Hox target genes are sufficient to define the identity of a single cell. We focus on the larval oenocyte, which is restricted to the abdomen and induced in response to a non-cell autonomous, transient and highly selective input from abdominal A (abdA). We use Hox mutant rescue assays to demonstrate that this function of abdA can be reconstituted by providing Rhomboid (Rho), a processing factor for the EGF receptor ligand, secreted Spitz. Thus, in order to make an oenocyte, abdA regulates just one principal target, rho, that acts at the top of a complex hierarchy of cell-differentiation genes. These studies strongly suggest that, in at least some contexts, Hox genes directly control only a few functional targets within each nucleus. This raises the possibility that much of the overall Hox downstream complexity results from cascades of indirect regulation and cell-to-cell heterogeneity.


Assuntos
Proteínas de Arabidopsis , Proteínas de Drosophila , Drosophila/crescimento & desenvolvimento , Fator de Crescimento Epidérmico , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas Nucleares , Abdome/embriologia , Abdome/crescimento & desenvolvimento , Animais , Proteína do Homeodomínio de Antennapedia , Drosophila/embriologia , Drosophila/genética , Embrião não Mamífero , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/genética , Larva , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA