Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071094

RESUMO

Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.


Assuntos
Cobre/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Ceruloplasmina/fisiologia , Proteínas de Transporte de Cobre/metabolismo , ATPases Transportadoras de Cobre/fisiologia , Farmacorresistência Viral , Interações Hospedeiro-Patógeno , Humanos , Vacinas contra Influenza , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Mamíferos/metabolismo , Nanopartículas Metálicas/uso terapêutico , Chaperonas Moleculares/metabolismo , Proteínas PrPC/fisiologia , RNA Viral/fisiologia , Prata/uso terapêutico , Superóxido Dismutase-1/fisiologia , Proteínas Virais/fisiologia , Replicação Viral
2.
BMC Cancer ; 18(1): 1028, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352565

RESUMO

BACKGROUND: The RAS/RAF/MEK/ERK pathway is one of the most downregulated pathway in cancer. Inhibitors of RAF and MEK have established clinical use while ERK inhibitors recently faced the clinic. We aimed to generate resistant cell lines which could be helpful for defining new combinations able to overcome resistance. METHODS: the human NSCLC cell line NCI-H727, sensitive to both MEK and ERK inhibitors, was treated with increasing concentrations of MEK162 (as MEK inhibitor) or SCH772984 as ERK inhibitor. RESULTS: we successfully obtained a MEK resistant subline (H727/MEK, after 40 passages) as well as an ERK resistant subline (H727/SCH, after 18 passages). The two resistant sublines H727/MEK and H727/SCH were cross-resistant to ERK and MEK inhibitors, respectively, but not to RAF inhibitors. The sublines maintained the responsiveness to inhibitors of the parallel PI3K/akt/mTOR pathway as well as to agents with different mechanism of action. Mechanistically, treatment of sensitive and resistant cells with MEK or ERK inhibitors was able to induce a similar inhibition of ERK phosphorylation, while only in parental cells the drugs were able to induce a downregulation of S6 and RSK phosphorylation. CONCLUSIONS: these resistant cells represent an important tool for further studies on the mechanisms of resistance and ways to overcome it.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/patologia , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
3.
Mol Cancer ; 16(1): 97, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558767

RESUMO

Advanced ovarian cancer is very responsive to first line platinum therapy, however almost invariably it relapses with a resistant disease. We have reported that patient derived ovarian xenografts (PDXs), independently from the degree of the initial response to cisplatin (DDP), show a significantly lower response to a second DDP cycle. We here report the effect of new combination regimens containing a MEK inhibitor (MEK), bevacizumab (BEV) and paclitaxel (PTX) as second line therapy in platinum-relapsing PDXs.We selected three DDP-relapsing PDX models based on the presence of activation of the RAS/RAF/MEK/ERK axis, mutated p53, lack of PTEN expression and activation of the PI3K pathway. In all the selected xenograft models, the antitumor efficacy of the doublets can be summarized as PTX/BEV > BEV/MEK > PTX/MEK and the antitumor activity of the triple combination was higher than any double combination. All the different combinations were well tolerated. The present data corroborate the activity of bevacizumab in combination with chemotherapy for the treatment of relapsing ovarian tumors and suggest that the addition of another targeted agents (MEK inhibitor) can further increase the antitumor activity without any increase in toxicity. PDX models represent a useful model to test second line therapy after failure of DDP first line.


Assuntos
Benzimidazóis/farmacologia , Bevacizumab/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Platina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Tumour Biol ; 37(2): 2015-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26337278

RESUMO

Caveolins have recently attracted attention for their possible involvement in signal transduction. Their role in cancer is debated, being reported both a suppressive and oncogenic role in different experimental conditions. Caveolin-1 is regulated by the tumor suppressor p53 which is able to bind its promoter and activate transcription. We had previous evidences indicating that a specific p73 isoform, namely ∆Np73ß, when overexpressed in NCI-H1299 induced growth arrest and cell death. By gene expression analysis in cell transiently overexpressed with ∆Np73ß, a strong induction of caveolin-1 was found. Caveolin was induced both at mRNA and protein level, and we characterised the promoter sequence of the gene encoding for caveolin-1 and found that the promoter region containing the putative p53 (and hence p73) binding sequence was responsive to ∆Np73ß, but not to ∆Np73α and ∆Np73γ which do not induce growth arrest as ∆Np73ß does. A reduction in cell adhesion was observed in ∆Np73ß overexpressing cells, again supporting a possible role of caveolins in determining these effects. By using specific siRNA directed against human caveolin-1, we could not however antagonize the effects induced by ∆Np73ß. Although caveolin-1 represents one of the genes whose expression is strongly activated by ∆Np73ß, we could not define a role of caveolin-1 as a mediator of ∆Np73ß associated growth arrest. It could well be that the expression of caveolin-1 is able to mediate other activities of ∆Np73ß, and studies are in progress to determine whether its expression is mainly associated to metastatic spread.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Caveolina 1/biossíntese , Neoplasias Pulmonares/genética , Proteína Tumoral p73/genética , Western Blotting , Caveolina 1/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
5.
Biometals ; 29(5): 841-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481100

RESUMO

Cisplatin is a widely used antitumor agent; however, tumor resistance and severe side effects limit its use. It is well accepted that cisplatin toxicity can be modulated in vitro in cell cultures by copper salts. In the present work, mice with different blood serum copper status were treated with a single intraperitoneal cisplatin injection at a dose of 5 mg/kg, monitored for 3 days in metabolic cages and analyzed for renal function. Both copper-deficient and copper-overloaded mice displayed more severe early proteinuria and retarded platinum excretion than control mice. The effects of copper status on cisplatin-induced nephrotoxicity are discussed.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Sulfato de Cobre/sangue , Rim/efeitos dos fármacos , Proteinúria/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Sulfato de Cobre/administração & dosagem , Sulfato de Cobre/toxicidade , Injeções Intraperitoneais , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Platina/análise , Platina/farmacocinética , Proteinúria/metabolismo , Distribuição Tecidual
6.
Mol Cancer ; 13: 238, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25335447

RESUMO

BACKGROUND: Bone metastases arise in nearly 70% of patients with advanced breast cancer, but the complex metastatic process has not been completely clarified yet. RANKL/RANK/OPG pathway modifications and the crosstalk between metastatic cells and bone have been indicated as potential drivers of the process. Interactions between tumor and bone cells have been studied in vivo and in vitro, but specific effects of the direct contact between human metastatic cells and human bone cells on RANKL/RANK/OPG pathway have not been investigated. FINDINGS: We directly co-cultured bone metastatic human breast cancer cells (BOKL) with osteo-differentiated human mesenchymal cells (BMSCs) from 3 different donors. BMSCs and BOKL were then enzymatically separated and FACS sorted. We found a significant increase in the RANKL/OPG ratio as compared to control, which was not observed in BOKL cultured in medium conditioned by BMSCs, neither in BOKL directly cultured with fibroblasts or medium conditioned by fibroblasts. Direct co-culture with osteo-differentiated BMSCs caused BOKL aggregation while proliferation was not affected by co-culture. To more specifically associate RANKL expression to osteogenic differentiation degree of BMSCs, we determined their osteogenic markers expression and matrix calcification relative to osteoblasts and fibroblasts. CONCLUSIONS: In conclusion, our co-culture model allowed to demonstrate for the first time that direct contact but not paracrine interactions between human metastatic breast cancer cells and bone cells has a significant effect on RANKL/OPG expression in bone metastatic cells. Furthermore, only direct contact with the bone microenvironment induced BOKL clustering without however significantly influencing their proliferation and migration.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Agregação Celular , Comunicação Celular , Movimento Celular , Proliferação de Células , Microambiente Celular , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica , Humanos
7.
Tumour Biol ; 35(10): 9967-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25008568

RESUMO

Colorectal cancer is the third most common cancer in the world, with 1.2 million new cancer cases annually. Chalcones are secondary metabolite precursors of flavonoids that exhibit diverse biological activities, including antioxidant and antitumor activities. The aim of this study was to investigate the antiproliferative effect of new synthetic chalcone derivatives on HCT116 cells. (E)-2-(2',4'-dimethoxybenzylidene)-1-tetralone (Q705) was found to be the most active (IC50 = 3.44 ± 0.25 µM). Based on these results, this compound was chosen for further analysis of its biochemical and molecular mechanisms. Our results showed that Q705 inhibited the growth and clonogenicity of HCT116 cells. The results of a flow cytometric analyses suggested that this compound caused a significant cell cycle arrest in G2/M phase and increased the proportion of cells in the subG0/G1 phase, marker of apoptosis. Q705-induced apoptosis was confirmed by TdT-mediated dUTP nick end labelling (TUNEL) assay. Treatment of HCT116 cells with this chalcone significantly increased the caspase-3,-7 activity and resulted in cleavage of poly-ADP-ribose polymerase (PARP). Changes in the nuclear morphology such as chromatin condensation were also observed. These effects were associated with a decreased expression of bcl-xL and increased overall ratio of bax/bcl-xL mRNA levels. Immunofluorescence and qRT-PCR analysis revealed that Q705 induced H2AX histone modifications characteristic of DNA damage, disruption of microtubule organization and downregulation of tubulins. In summary, these results suggest that the cyclic chalcone analogue Q705 has potential as a new compound for colorectal cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Neoplasias Colorretais/patologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Células HCT116 , Humanos , Marcação In Situ das Extremidades Cortadas , Reação em Cadeia da Polimerase em Tempo Real
8.
Lancet Oncol ; 14(10): 981-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23883922

RESUMO

BACKGROUND: Erlotinib is registered for treatment of all patients with advanced non-small-cell lung cancer (NSCLC). However, its efficacy for treatment of patients whose tumours are EGFR wild-type-which includes most patients-is still contentious. We assessed the efficacy of erlotinib compared with a standard second-line chemotherapy in such patients. METHODS: We did this randomised controlled trial in 52 Italian hospitals. We enrolled patients who had metastatic NSCLC, had had platinum-based chemotherapy, and had wild-type EGFR as assessed by direct sequencing. Patients were randomly assigned centrally (1:1) to receive either erlotinib orally 150 mg/day or docetaxel intravenously 75 mg/m(2) every 21 days or 35 mg/m(2) on days 1, 8, and 15, every 28 days. Randomisation was stratified by centre, stage, type of first-line chemotherapy, and performance status. Patients and investigators who gave treatments or assessed outcomes were not masked to treatment allocation, investigators who analysed results were. The primary endpoint was overall survival in the intention-to-treat population. The study is registered at ClinicalTrials.gov, number NCT00637910. FINDINGS: We screened 702 patients, of whom we genotyped 540. 222 patients were enrolled (110 assigned to docetaxel vs 112 assigned to erlotinib). Median overall survival was 8·2 months (95% CI 5·8-10·9) with docetaxel versus 5·4 months (4·5-6·8) with erlotinib (adjusted hazard ratio [HR] 0·73, 95% CI 0·53-1·00; p=0·05). Progression-free survival was significantly better with docetaxel than with erlotinib: median progression-free survival was 2·9 months (95% CI 2·4-3·8) with docetaxel versus 2·4 months (2·1-2·6) with erlotinib (adjusted HR 0·71, 95% CI 0·53-0·95; p=0·02). The most common grade 3-4 toxic effects were: low absolute neutrophil count (21 [20%] of 104 in the docetaxel group vs none of 107 in the erlotinib group), skin toxic effects (none vs 15 [14%]), and asthenia (ten [10%] vs six [6%]). INTERPRETATION: Our results show that chemotherapy is more effective than erlotinib for second-line treatment for previously treated patients with NSCLC who have wild-type EGFR tumours.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Taxoides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Intervalo Livre de Doença , Docetaxel , Receptores ErbB/genética , Cloridrato de Erlotinib , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
9.
J Exp Clin Cancer Res ; 43(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163906

RESUMO

BACKGROUND: About 10% of NSCLCs are mutated in KRAS and impaired in STK11/LKB1, a genetic background associated with poor prognosis, caused by an increase in metastatic burden and resistance to standard therapy. LKB1 is a protein involved in a number of biological processes and is particularly important for its role in the regulation of cell metabolism. LKB1 alterations lead to protein loss that causes mitochondria and metabolic dysfunction that makes cells unable to respond to metabolic stress. Different studies have shown how it is possible to interfere with cancer metabolism using metformin and caloric restriction (CR) and both modify the tumor microenvironment (TME), stimulating the switch from "cold" to "hot". Given the poor therapeutic response of KRASmut/LKB1mut patients, and the role of LKB1 in cell metabolism, we examined whether the addition of metformin and CR enhanced the response to chemo or chemo-immunotherapy in LKB1 impaired tumors. METHODS: Mouse cell lines were derived from lung nodules of transgenic mice carrying KRASG12D with either functional LKB1 (KRASG12D/LKB1wt) or mutated LKB1 (KRASG12D/LKB1mut). Once stabilized in vitro, these cell lines were inoculated subcutaneously and intramuscularly into immunocompetent mice. Additionally, a patient-derived xenograft (PDX) model was established by directly implanting tumor fragments from patient into immunocompromised mice. The mice bearing these tumor models were subjected to treatment with chemotherapy or chemo-immunotherapy, both as standalone regimens and in combination with metformin and CR. RESULTS: Our preclinical results indicate that in NSCLC KRASmut/LKB1mut tumors, metformin and CR do enhance the response to chemo and chemo-immunotherapy, inducing a metabolic stress condition that these tumors are not able to overcome. Analysis of immune infiltrating cells did not bring to light any strong correlation between the TME immune-modulation and the tumor response to metformin and CR. CONCLUSION: Our in vitro and in vivo preliminary studies confirm our hypothesis that the addition of metformin and CR is able to improve the antitumor activity of chemo and chemoimmunotherapy in LKB1 impaired tumors, exploiting their inability to overcome metabolic stress.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metformina , Humanos , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Restrição Calórica , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Transgênicos , Imunoterapia , Mutação , Microambiente Tumoral
10.
Front Immunol ; 14: 1128582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228592

RESUMO

Introduction: Gene therapy holds promise to cure various diseases at the fundamental level. For that, efficient carriers are needed for successful gene delivery. Synthetic 'non-viral' vectors, as cationic polymers, are quickly gaining popularity as efficient vectors for transmitting genes. However, they suffer from high toxicity associated with the permeation and poration of the cell membrane. This toxic aspect can be eliminated by nanoconjugation. Still, results suggest that optimising the oligonucleotide complexation, ultimately determined by the size and charge of the nanovector, is not the only barrier to efficient gene delivery. Methods: We herein develop a comprehensive nanovector catalogue comprising different sizes of Au NPs functionalized with two different cationic molecules and further loaded with mRNA for its delivery inside the cell. Results and Discussion: Tested nanovectors showed safe and sustained transfection efficiencies over 7 days, where 50 nm Au NPs displayed the highest transfection rates. Remarkably, protein expression was increased when nanovector transfection was performed combined with chloroquine. Cytotoxicity and risk assessment demonstrated that nanovectors are safe, ascribed to lesser cellular damage due to their internalization and delivery via endocytosis. Obtained results may pave the way to design advanced and efficient gene therapies for safely transferring oligonucleotides.


Assuntos
Ouro , Nanopartículas Metálicas , RNA Mensageiro , Transfecção , Endocitose
11.
Clin Lung Cancer ; 24(4): 381-387, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959048

RESUMO

Although immunotherapy (IO) has changed the paradigm for the treatment of patients with advanced non-small cell lung cancers (aNSCLC), only around 30% to 50% of treated patients experience a long-term benefit from IO. Furthermore, the identification of the 30 to 50% of patients who respond remains a major challenge, as programmed Death-Ligand 1 (PD-L1) is currently the only biomarker used to predict the outcome of IO in NSCLC patients despite its limited efficacy. Considering the dynamic complexity of the immune system-tumor microenvironment (TME) and its interaction with the host's and patient's behavior, it is unlikely that a single biomarker will accurately predict a patient's outcomes. In this scenario, Artificial Intelligence (AI) and Machine Learning (ML) are becoming essential to the development of powerful decision-making tools that are able to deal with this high-complexity and provide individualized predictions to better match treatments to individual patients and thus improve patient outcomes and reduce the economic burden of aNSCLC on healthcare systems. I3LUNG is an international, multicenter, retrospective and prospective, observational study of patients with aNSCLC treated with IO, entirely funded by European Union (EU) under the Horizon 2020 (H2020) program. Using AI-based tools, the aim of this study is to promote individualized treatment in aNSCLC, with the goals of improving survival and quality of life, minimizing or preventing undue toxicity and promoting efficient resource allocation. The final objective of the project is the construction of a novel, integrated, AI-assisted data storage and elaboration platform to guide IO administration in aNSCLC, ensuring easy access and cost-effective use by healthcare providers and patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , União Europeia , Inteligência Artificial , Estudos Retrospectivos , Estudos Prospectivos , Qualidade de Vida , Carcinoma Pulmonar de Células não Pequenas/patologia , Biomarcadores , Imunoterapia , Pulmão/patologia , Antígeno B7-H1 , Microambiente Tumoral
12.
Front Oncol ; 12: 903016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719948

RESUMO

Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.

13.
Front Oncol ; 12: 889826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646638

RESUMO

LKB1 (liver kinase B1) is a master regulator of several processes such as metabolism, proliferation, cell polarity and immunity. About one third of non-small cell lung cancers (NSCLCs) present LKB1 alterations, which almost invariably lead to protein loss, resulting in the absence of a potential druggable target. In addition, LKB1-null tumors are very aggressive and resistant to chemotherapy, targeted therapies and immune checkpoint inhibitors (ICIs). In this review, we report and comment strategies that exploit peculiar co-vulnerabilities to effectively treat this subgroup of NSCLCs. LKB1 loss leads to an enhanced metabolic avidity, and treatments inducing metabolic stress were successful in inhibiting tumor growth in several preclinical models. Biguanides, by compromising mitochondria and reducing systemic glucose availability, and the glutaminase inhibitor telaglenastat (CB-839), inhibiting glutamate production and reducing carbon intermediates essential for TCA cycle progression, have provided the most interesting results and entered different clinical trials enrolling also LKB1-null NSCLC patients. Nutrient deprivation has been investigated as an alternative therapeutic intervention, giving rise to interesting results exploitable to design specific dietetic regimens able to counteract cancer progression. Other strategies aimed at targeting LKB1-null NSCLCs exploit its pivotal role in modulating cell proliferation and cell invasion. Several inhibitors of LKB1 downstream proteins, such as mTOR, MEK, ERK and SRK/FAK, resulted specifically active on LKB1-mutated preclinical models and, being molecules already in clinical experimentation, could be soon proposed as a specific therapy for these patients. In particular, the rational use in combination of these inhibitors represents a very promising strategy to prevent the activation of collateral pathways and possibly avoid the potential emergence of resistance to these drugs. LKB1-null phenotype has been correlated to ICIs resistance but several studies have already proposed the mechanisms involved and potential interventions. Interestingly, emerging data highlighted that LKB1 alterations represent positive determinants to the new KRAS specific inhibitors response in KRAS co-mutated NSCLCs. In conclusion, the absence of the target did not block the development of treatments able to hit LKB1-mutated NSCLCs acting on several fronts. This will give patients a concrete chance to finally benefit from an effective therapy.

14.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496978

RESUMO

Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Graxos Dessaturases , Neoplasias Pulmonares , Inibidores de MTOR , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos Dessaturases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de MTOR/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
15.
J Exp Clin Cancer Res ; 41(1): 343, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517829

RESUMO

BACKGROUND: Thymic malignancies are a heterogeneous group of rare cancers for which systemic chemotherapy is the standard treatment in the setting of advanced, recurrent or refractory diseases. Both environmental and genetic risk factors have not been fully clarified and few target-specific drugs have been developed for thymic epithelial tumors. A major challenge in studying thymic epithelial tumors is the lack of preclinical models for translational studies. MAIN BODY: Starting from bioptic material of two consecutive recurrences of the same patient, we generated two patient-derived xenografts. The patient-derived xenografts models were characterized for histology by immunohistochemistry and mutations using next-generation sequencing. When compared to the original tumors resected from the patient, the two patient-derived xenografts had preserved morphology after the stain with hematoxylin and eosin, although there was a moderate degree of de-differentiation. From a molecular point of view, the two patient-derived xenografts maintained 74.3 and 61.8% of the mutations present in the human tumor of origin. SHORT CONCLUSION: The newly generated patient-derived xenografts recapitulate both the molecular characteristics and the evolution of the thymoma it derives from well, allowing to address open questions for this rare cancer.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Animais , Humanos , Timoma/tratamento farmacológico , Timoma/genética , Recidiva Local de Neoplasia/genética , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/genética , Modelos Animais de Doenças
16.
Cell Mol Life Sci ; 67(10): 1713-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20146081

RESUMO

Hematopoietic stem cells (HSC) isolated from umbilical cord blood (UCB) were treated with ionizing radiation (IR) and sensitivity and IR induced checkpoints activation were investigated. No difference in the sensitivity and in the activation of DNA damage pathways was observed between CD133+ HSC and cells derived from them after ex vivo expansion. Chk1 protein was very low in freshly isolated CD133+ cells, and undetectable in ex vivo expanded UCB CD133+ cells. Chk1 was expressed only on day 3 of the ex vivo expansion. This pattern of Chk1 expression was corroborated in CD133+ cells isolated from peripheral blood apheresis collected from an healthy donor. Treatment with a specific Chk1 inhibitor resulted in a strong reduction in the percentage of myeloid precursors (CD33+) and an increase in the percentage of lymphoid precursors (CD38+) compared to untreated cells, suggesting a possible role for Chk1 in the differentiation program of UCB CD133+ HSC.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Proteínas Quinases/metabolismo , Antígeno AC133 , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Separação Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA , Sangue Fetal/citologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Recém-Nascido , Cinética , Peptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico
18.
Nat Commun ; 12(1): 4651, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330898

RESUMO

The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in lung adenocarcinoma (LUAD) development, the most common histological type of lung cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the translation initiation factor eIF2 (p-eIF2α), the focal point of ISR, is related to invasiveness, increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in KRAS-driven lung tumorigenesis in mice demonstrated that p-eIF2α causes the translational repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in LUAD treatment.


Assuntos
Adenocarcinoma/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Humanos , Indóis/farmacologia , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Estresse Fisiológico/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
J Thorac Oncol ; 16(8): 1298-1311, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887464

RESUMO

INTRODUCTION: Preclinical models recently unveiled the vulnerability of LKB1/KRAS comutated NSCLC to metabolic stress-based treatments. Because miR-17 is a potential epigenetic regulator of LKB1, we hypothesized that wild-type LKB1 (LKB1WT) NSCLC with high miR-17 expression may be sensitive to an energetic stress condition, and eligible for metabolic frailties-based therapeutic intervention. METHODS: We took advantage of NSCLC cell lines with different combinations of KRAS mutation and LKB1 deletion and of patient-derived xenografts (PDXs) with high (LKB1WT/miR-17 high) or low (LKB1WT/miR-17 low) miR-17 expression. We evaluated LKB1 pathway impairment and apoptotic response to metformin. We retrospectively evaluated LKB1 and miR-17 expression levels in tissue specimens of patients with NSCLC and PDXs. In addition, a lung cancer series from The Cancer Genome Atlas data set was analyzed for miR-17 expression and potential correlation with clinical features. RESULTS: We identified miR-17 as an epigenetic regulator of LKB1 in NSCLC and confirmed targeting of miR-17 to LKB1 3' untranslated region by luciferase reporter assay. We found that miR-17 overexpression functionally impairs the LKB1/AMPK pathway. Metformin treatment prompted apoptosis on miR-17 overexpression only in LKB1WT cell lines, and in LKB1WT/miR-17 high PDXs. A retrospective analysis in patients with NSCLC revealed an inverse correlation between miR-17 and LKB1 expression and highlighted a prognostic role of miR-17 expression in LKB1WT patients, which was further confirmed by The Cancer Genome Atlas data analysis. CONCLUSIONS: We identified miR-17 as a mediator of LKB1 expression in NSCLC tumors. This study proposes a miR-17 expression score potentially exploitable to discriminate LKB1WT patients with NSCLC with impaired LKB1 expression and poor outcome, eligible for energy-stress-based treatments.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estudos Retrospectivos
20.
Biochemistry ; 49(1): 226-35, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19950984

RESUMO

Brostallicin is a novel and unique glutathione transferase-activated pro-drug with promising anticancer activity, currently in phase I and II clinical evaluation. In this work, we show that, in comparison with the parental cell line showing low GST levels, the cytotoxic activity of brostallicin is significantly enhanced in the human breast carcinoma MCF-7 cell line, transfected with either human GST-pi or GST-mu. Moreover, we describe in detail the interaction of brostallicin with GSH in the presence of GSTP1-1 and GSTM2-2, the predominant GST isoenzymes found within tumor cells. The experiments reported here indicate that brostallicin binds reversibly to both isoenzymes with K(d) values in the micromolar range (the affinity being higher for GSTM2-2). Direct evidence that both GSTP1-1 and GSTM2-2 isoenzymes catalyze the Michael addition reaction of GSH to brostallicin has been obtained both by an HPLC-MS technique and by a new fluorometric assay. We also saw the rapid formation of an intermediate reactive species, which is slowly converted into the final products. This intermediate, identified as the alpha-chloroamido derivative of the GSH-brostallicin adduct, is able to alkylate DNA in a sequence-specific manner and appears to be the active form of the drug. The kinetic behavior of the reaction between brostallicin and GSH, catalyzed by GSTP1-1, has been studied in detail, and a minimum kinetic scheme that suitably describes the experimental data is provided. Overall, these data fully support and extend the findings that brostallicin could be indicated for the treatment of tumor overexpressing the pi or mu class GST.


Assuntos
Antineoplásicos/farmacologia , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Guanidinas/farmacologia , Pirróis/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Catálise , Linhagem Celular Tumoral , DNA/metabolismo , Feminino , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa Transferase/antagonistas & inibidores , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA