RESUMO
Western equine encephalitis virus (WEEV) is an arthropod-borne virus (arbovirus) that frequently caused major outbreaks of encephalitis in humans and horses in the early twentieth century, but the frequency of outbreaks has since decreased markedly, and strains of this alphavirus isolated in the past two decades are less virulent in mammals than strains isolated in the 1930s and 1940s1-3. The basis for this phenotypic change in WEEV strains and coincident decrease in epizootic activity (known as viral submergence3) is unclear, as is the possibility of re-emergence of highly virulent strains. Here we identify protocadherin 10 (PCDH10) as a cellular receptor for WEEV. We show that multiple highly virulent ancestral WEEV strains isolated in the 1930s and 1940s, in addition to binding human PCDH10, could also bind very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), which are recognized by another encephalitic alphavirus as receptors4. However, whereas most of the WEEV strains that we examined bind to PCDH10, a contemporary strain has lost the ability to recognize mammalian PCDH10 while retaining the ability to bind avian receptors, suggesting WEEV adaptation to a main reservoir host during enzootic circulation. PCDH10 supports WEEV E2-E1 glycoprotein-mediated infection of primary mouse cortical neurons, and administration of a soluble form of PCDH10 protects mice from lethal WEEV challenge. Our results have implications for the development of medical countermeasures and for risk assessment for re-emerging WEEV strains.
Assuntos
Vírus da Encefalite Equina do Oeste , Especificidade de Hospedeiro , Protocaderinas , Receptores Virais , Animais , Feminino , Humanos , Masculino , Camundongos , Aves/metabolismo , Aves/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Vírus da Encefalite Equina do Oeste/classificação , Vírus da Encefalite Equina do Oeste/metabolismo , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/virologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Fenótipo , Protocaderinas/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologiaRESUMO
Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or ß (PI5P4Kα and ß) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and ß in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K ß and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.
Assuntos
Neoplasias da Mama/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Respiração Celular , Senescência Celular , Embrião de Mamíferos/metabolismo , Técnicas de Silenciamento de Genes , Genes Letais , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismoRESUMO
The Endoplasmic Reticulum (ER)-resident HSP70 chaperone BiP (HSPA5) plays a crucial role in maintaining and restoring protein folding homeostasis in the ER. BiP's function is often dysregulated in cancer and virus-infected cells, conferring pro-oncogenic and pro-viral advantages. We explored BiP's functions during infection by the Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic gamma-herpesvirus associated with cancers of immunocompromised patients. Our findings reveal that BiP protein levels are upregulated in infected epithelial cells during the lytic phase of KSHV infection. This upregulation occurs independently of the unfolded protein response (UPR), a major signaling pathway that regulates BiP availability. Genetic and pharmacological inhibition of BiP halts KSHV viral replication and reduces the proliferation and survival of KSHV-infected cells. Notably, inhibition of BiP limits the spread of other alpha- and beta-herpesviruses and poxviruses with minimal toxicity for normal cells. Our work suggests that BiP is a potential target for developing broad-spectrum antiviral therapies against double-stranded DNA viruses and a promising candidate for therapeutic intervention in KSHV-related malignancies.
RESUMO
While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.
Assuntos
Autofagia/fisiologia , Jejum/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Autofagossomos/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais/fisiologiaRESUMO
The heterohexameric ATPases associated with diverse cellular activities (AAA)-ATPase Pex1/Pex6 is essential for the formation and maintenance of peroxisomes. Pex1/Pex6, similar to other AAA-ATPases, uses the energy from ATP hydrolysis to mechanically thread substrate proteins through its central pore, thereby unfolding them. In related AAA-ATPase motors, substrates are recruited through binding to the motor's N-terminal domains or N terminally bound cofactors. Here, we use structural and biochemical techniques to characterize the function of the N1 domain in Pex6 from budding yeast, Saccharomyces cerevisiae. We found that although Pex1/ΔN1-Pex6 is an active ATPase in vitro, it does not support Pex1/Pex6 function at the peroxisome in vivo. An X-ray crystal structure of the isolated Pex6 N1 domain shows that the Pex6 N1 domain shares the same fold as the N-terminal domains of PEX1, CDC48, and NSF, despite poor sequence conservation. Integrating this structure with a cryo-EM reconstruction of Pex1/Pex6, AlphaFold2 predictions, and biochemical assays shows that Pex6 N1 mediates binding to both the peroxisomal membrane tether Pex15 and an extended loop from the D2 ATPase domain of Pex1 that influences Pex1/Pex6 heterohexamer stability. Given the direct interactions with both Pex15 and the D2 ATPase domains, the Pex6 N1 domain is poised to coordinate binding of cofactors and substrates with Pex1/Pex6 ATPase activity.
Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfoproteínas/metabolismoRESUMO
Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began â¼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.
Assuntos
Fixação de Nitrogênio , Nitrogenase , Nitrogenase/genética , Nitrogenase/química , Nitrogenase/metabolismo , Fixação de Nitrogênio/genética , Nitrogênio/metabolismoRESUMO
Cells reposition their nuclei for diverse specialized functions through a wide variety of cytoskeletal mechanisms. During Drosophila oogenesis, 15 nurse cells connected by ring canals to each other and the oocyte contract, 'dumping' their cytoplasm into the oocyte. Prior to dumping, actin cables initiate from the nurse cell cortex and elongate toward their nuclei, pushing them away from ring canals to prevent obstruction. How the cable arrays reposition nuclei is unknown. We found that these arrays are asymmetric, with regional differences in actin cable growth rate dependent on the differential localization of the actin assembly factors Enabled and Diaphanous. Enabled mislocalization produces a uniform growth rate. In oocyte-contacting nurse cells with asymmetric cable arrays, nuclei move away from ring canals. With uniform arrays, these nuclei move toward the adjacent ring canal instead. This correlated with ring canal nuclear blockage and incomplete dumping. Our data suggest that nuclear repositioning relies on the regulated cortical localization of Diaphanous and Enabled to produce actin cable arrays with asymmetric growth that push nuclei away from ring canals, enabling successful oogenesis.
Assuntos
Proteínas de Drosophila , Drosophila , Actinas/fisiologia , Animais , Núcleo Celular , Drosophila/fisiologia , Forminas , Oócitos , Oogênese/fisiologiaRESUMO
In this issue of Molecular Cell, Malek et al. (2017) describe a novel HPLC-MS method permitting separation of PI(3,4)P2 and PI(4,5)P2, a technical issue hindering the phosphoinositide signaling field. They use this method to uncover a new target and critical role for PTEN in cancer.
Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , PTEN Fosfo-Hidrolase , Fosfatidilinositóis , Transdução de SinaisRESUMO
Cancer cachexia, or the unintentional loss of body weight in patients with cancer, is a multiorgan and multifactorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. Although cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the frontline for both impaired nutrient absorption and immune-activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past two decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Furthermore, the most used anticancer drugs (e.g. chemotherapy and immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.
Assuntos
Caquexia , Microbioma Gastrointestinal , Músculo Esquelético , Neoplasias , Caquexia/metabolismo , Caquexia/microbiologia , Caquexia/etiologia , Humanos , Microbioma Gastrointestinal/fisiologia , Neoplasias/microbiologia , Neoplasias/complicações , Neoplasias/metabolismo , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiologia , Disbiose/microbiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/microbiologia , Tecido Adiposo/imunologiaRESUMO
Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.
Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Gotículas Lipídicas , Camundongos Endogâmicos C57BL , Músculo Esquelético , Animais , Caquexia/metabolismo , Caquexia/patologia , Caquexia/etiologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/complicações , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Camundongos , Metabolismo dos Lipídeos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Mitocôndrias Musculares/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestruturaRESUMO
Immune cell-driven pathways are linked to cancer cachexia. Tumor presence is associated with immune cell infiltration whereas cytotoxic chemotherapies reduce immune cell counts. Despite these paradoxical effects, both cancer and chemotherapy can cause cachexia; however, our understanding of immune responses in the cachexia condition with cancer and chemotherapy is largely unknown. We sought to advance our understanding of the immunology underlying cancer and cancer with chemotherapy-induced cachexia. CD2F1 mice were given 106 C26 cells, followed by five doses of 5-fluorouracil (5FU; 30 mg/kg LM, ip) or PBS. Indices of cachexia and tumor (TUM), skeletal muscle (SKM), and adipose tissue (AT) immune cell populations were examined using high-parameter flow cytometry. Although 5FU was able to stunt tumor growth, % body weight loss and muscle mass were not different between C26 and C26 + 5FU. C26 increased CD11b+Ly6g+ and CD11b+Ly6cInt inflammatory myeloid cells in SKM and AT; however, both populations were reduced with C26 + 5FU. tSNE analysis revealed 24 SKM macrophage subsets wherein 8 were changed with C26 or C26 + 5FU. C26 + 5FU increased SKM CD11b-CD11c+ dendritic cells, CD11b-NK1.1+ NK-cells, and CD11b-B220+ B-cells, and reduced Ly6cHiCX3CR1+CD206+CD163IntCD11c-MHCII- infiltrated macrophages and other CD11b+Ly6cHi myeloid cells compared with C26. Both C26 and C26 + 5FU had elevated CD11b+F480+CD206+MHCII- or more specifically Ly6cLoCX3CR1+CD206+CD163IntCD11c-MHCII- profibrotic macrophages. 5FU suppressed tumor growth and decreased SKM and AT inflammatory immune cells without protecting against cachexia suggesting that these cells are not required for wasting. However, profibrotic cells and muscle inflammatory/atrophic signaling appear consistent with cancer- and cancer with chemotherapy-induced wasting and remain potential therapeutic targets.NEW & NOTEWORTHY Despite being an immune-driven condition, our understanding of skeletal muscle and adipose tissue immune cells with cachexia is limited. Here, we identified immune cell populations in tumors, skeletal muscle, and adipose tissue in C26 tumor-bearing mice with/without 5-fluorouracil (5FU). C26 and C26 + 5FU had increased skeletal muscle profibrotic macrophages, but 5FU reduced inflammatory myeloid cells without sparing mass. Tumor presence and chemotherapy have contrasting effects on certain immune cells, which appeared not necessary for wasting.
Assuntos
Antineoplásicos , Fluoruracila , Camundongos , Animais , Fluoruracila/efeitos adversos , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Antineoplásicos/farmacologiaRESUMO
Some patients develop persistent eye pain after refractive surgery, but factors that cause or sustain pain are unknown. We tested whether tear proteins of patients with pain 3 months after surgery differ from those of patients without pain. Patients undergoing refractive surgery (laser in situ keratomileusis or photorefractive keratectomy ) were recruited from 2 clinics, and tears were collected 3 months after surgery. Participants rated their eye pain using a numerical rating scale (NRS, 0-10; no pain-worst pain) at baseline, 1 day, and 3 months after surgery. Using tandem mass tag proteomic analysis, we examined tears from patients with pain [NRS ≥ 3 at 3 months (n = 16)] and patients with no pain [NRS ≤ 1 at 3 months (n = 32)] after surgery. A subset of proteins (83 of 2748 detected, 3.0%) were associated with pain 3 months after surgery. High-dimensional statistical models showed that the magnitude of differential expression was not the only important factor in classifying tear samples from pain patients. Models utilizing 3 or 4 proteins had better classification performance than single proteins and represented differences in both directions (higher or lower in pain). Thus, patterns of protein differences may serve as biomarkers of postsurgical eye pain as well as potential therapeutic targets.
Assuntos
Biomarcadores , Proteínas do Olho , Humanos , Biomarcadores/metabolismo , Feminino , Masculino , Adulto , Proteínas do Olho/metabolismo , Proteínas do Olho/análise , Proteômica/métodos , Pessoa de Meia-Idade , Dor Ocular/etiologia , Lágrimas/química , Lágrimas/metabolismo , Ceratomileuse Assistida por Excimer Laser In Situ/efeitos adversos , Ceratectomia Fotorrefrativa/efeitos adversos , Espectrometria de Massas em Tandem , Dor Pós-Operatória/etiologia , Procedimentos Cirúrgicos Refrativos/efeitos adversosRESUMO
Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.
Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Animais , Feminino , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colite/imunologia , Colite/microbiologia , Álcoois Graxos/farmacologia , Di-Inos/farmacologia , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/patologia , Colo/imunologia , Colo/microbiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/microbiologiaRESUMO
Perturbations to animal-associated microbial communities (the microbiota) have deleterious effects on various aspects of host fitness, but the molecular processes underlying these impacts are poorly understood. Here, we identify a connection between the microbiota and the neuronal factor Arc1 that affects growth and metabolism in Drosophila. We find that Arc1 exhibits tissue-specific microbiota-dependent expression changes, and that germ-free flies bearing a null mutation of Arc1 exhibit delayed and stunted larval growth, along with a variety of molecular, cellular and organismal traits indicative of metabolic dysregulation. Remarkably, we show that the majority of these phenotypes can be fully suppressed by mono-association with a single Acetobacter sp. isolate, through mechanisms involving both bacterial diet modification and live bacteria. Additionally, we provide evidence that Arc1 function in key neuroendocrine cells of the larval brain modulates growth and metabolic homeostasis under germ-free conditions. Our results reveal a role for Arc1 in modulating physiological responses to the microbial environment, and highlight how host-microbe interactions can profoundly impact the phenotypic consequences of genetic mutations in an animal host.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Drosophila/metabolismo , Drosophila/fisiologia , Microbiota/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Acetobacter/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Homeostase/fisiologia , Larva/metabolismo , Larva/fisiologia , Mutação/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , FenótipoRESUMO
BACKGROUND: B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM. Antibody-capture based methods, such as enzyme-linked immunosorbent assay (ELISA) and immunoaffinity-liquid chromatography-multiple reaction monitoring (IA-LC-MRM), have been reported and well adopted to measure sBCMA in clinical samples. However, both methods are biased by capturing antibodies. METHODS: We have used various LC-MS workflows to characterize and quantify endogenous sBCMA in MM patient samples, including bottom-up peptide mapping, intact analysis, IA-based, and reagent-free (RF)-LC-MRM quantitation. RESULTS: We have confirmed that sBCMA contains a variable N-terminus and a C-terminus that extends to the transmembrane domain, ending at amino acid 61. Leveraging an in-house synthesized G-1-61 sBCMA recombinant standard, we developed a RF-LC-MRM method for unbiased sBCMA quantitation in MM patient samples. By comparing the results from RF-LC-MRM with ELISA and IA-LC-MRM, we demonstrated that RF-LC-MRM measures a more complete pool of endogenous sBCMA compared to the antibody-based methods. CONCLUSIONS: This work fills the knowledge gap of the exact sequence of endogenous sBCMA for the first time, which differs from the current commercially available standard. Additionally, this work highlights the necessity of identifying the actual sequence of an endogenous soluble target such as sBCMA, both for bioanalytical purposes and to underpin pharmacodynamic measurements.
Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Humanos , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Mieloma Múltiplo/diagnóstico , Espectrometria de Massas em Tandem , AnticorposRESUMO
Hypoxia is a pivotal factor in the pathophysiology of various clinical conditions, including obstructive sleep apnea, which has a strong association with cardiovascular diseases like hypertension, posing significant health risks. Although the precise mechanisms linking hypoxemia-associated clinical conditions with hypertension remains incompletely understood, compelling evidence suggests that hypoxia induces plasticity of the neurocirculatory control system. Despite variations in experimental designs and the severity, frequency, and duration of hypoxia exposure, evidence from animal and human models consistently demonstrates the robust effects of hypoxemia in triggering reflex-mediated sympathetic activation. Both acute and chronic hypoxia alters neurocirculatory regulation and, in some circumstances, leads to sympathetic outflow and elevated blood pressures that persist beyond the hypoxic stimulus. Dysregulation of autonomic control could lead to adverse cardiovascular outcomes and increase the risk of developing hypertension.
Assuntos
Hipóxia , Reflexo , Humanos , Hipóxia/fisiopatologia , Animais , Reflexo/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Sistema Cardiovascular/inervaçãoRESUMO
Patient and caregiver involvement can enhance the uptake and impact of research, but the involvement of patients and caregivers who are underserved and marginalized is often limited. A better understanding of how to make involvement in research more broadly accessible, supportive, and inclusive for patients with chronic kidney disease (CKD) and caregivers is needed. We conducted a national workshop involving patients, caregivers, clinicians, and researchers from across Australia to identify strategies to increase the diversity of patients and caregivers involved in CKD research. Six themes were identified. Building trust and a sense of safety was considered pivotal to establishing meaningful relationships to support knowledge exchange. Establishing community and connectedness was expected to generate a sense of belonging to motivate involvement. Balancing stakeholder goals, expectations, and responsibilities involved demonstrating commitment and transparency by researchers. Providing adequate resources and support included strategies to minimize the burden of involvement for patients and caregivers. Making research accessible and relatable was about nurturing patient and caregiver interest by appealing to intrinsic motivators. Adapting to patient and caregiver needs and preferences required tailoring the approach for individuals and the target community. Strategies and actions to support these themes may support more diverse and equitable involvement of patients and caregivers in research in CKD.
Assuntos
Cuidadores , Participação do Paciente , Insuficiência Renal Crônica , Humanos , Cuidadores/psicologia , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/psicologia , Austrália , Pesquisa Translacional Biomédica , Pesquisa BiomédicaRESUMO
PURPOSE OF REVIEW: Misalignment between the endogenous biological timing system and behavioral activities (i.e., sleep/wake, eating, activity) contributes to adverse cardiovascular health. In this review, we discuss the effects of recurring circadian misalignment on blood pressure regulation and the implications for hypertension development. Additionally, we highlight emerging therapeutic approaches designed to mitigate the negative cardiovascular consequences elicited by circadian disruption. RECENT FINDINGS: Circadian misalignment elicited by work schedules that require individuals to be awake during the biological night (i.e., shift work) alters 24-h blood pressure rhythms. Mechanistically, circadian misalignment appears to alter blood pressure via changes in autonomic nervous system balance, variations to sodium retention, dysregulation of endothelial vasodilatory responsiveness, and activation of proinflammatory mechanisms. Recurring circadian misalignment produced by a mismatch in sleep timing on free days vs. work days (i.e., social jetlag) appears to have no direct effects on prevailing blood pressure levels in healthy adults; though, circadian disruptions resulting from social jetlag may increase the risk of hypertension through enhanced sympathetic activation and/or obesity. Furthermore, social jetlag assessment may be a useful metric in shift work populations where the magnitude of circadian misalignment may be greater than in the general population. Circadian misalignment promotes unfavorable changes to 24-h blood pressure rhythms, most notably in shift working populations. While light therapy, melatonin supplementation, and the timing of drug administration may improve cardiovascular outcomes, interventions designed to target the effects of circadian misalignment on blood pressure regulation are warranted.
Assuntos
Transtornos Cronobiológicos , Hipertensão , Adulto , Humanos , Pressão Sanguínea , Ritmo Circadiano/fisiologia , Transtornos Cronobiológicos/complicações , Sono/fisiologiaRESUMO
BACKGROUND: Benzodiazepines are the preferred treatment for alcohol withdrawal. Phenobarbital is an alternative in the setting of prescriber expertise or benzodiazepine contraindication. OBJECTIVE: To evaluate the efficacy and safety of a phenobarbital dosing strategy aimed at treating a spectrum of alcohol withdrawal symptoms across various patient populations. METHODS: Retrospective review of patients admitted with concerns of alcohol withdrawal between May 2018 and November 2022. Patients were separated into a before-after cohort of lorazepam or phenobarbital. The primary outcome was hospital length of stay (LOS). Secondary outcomes were intensive care unit (ICU) LOS, escalation of respiratory support, increased level of care (LOC), and incidence of delirium tremens and/or seizures. RESULTS: Two hundred and seventy-seven patients received lorazepam and 198 received phenobarbital. Hospital LOS was longer in the phenobarbital cohort compared with the lorazepam cohort (6.9 vs 9.3 days). There was no difference in ICU LOS. Level of care increases were fewer in the phenobarbital cohort (4 events vs 19 events). There were higher rates of non-invasive respiratory interventions in the lorazepam cohort and higher rates of mechanical ventilation in the phenobarbital cohort. Utilization of phenobarbital was attributed to a reduction in delirium tremens and seizures. CONCLUSION AND RELEVANCE: This study is novel because of the broad application of a phenobarbital order set across multiple levels of care and patient admission diagnoses. A risk targeted split load intravenous phenobarbital order set can safely be administered to patients with fewer escalations of care, seizures, delirium tremens, and respiratory care escalation.
Assuntos
Tempo de Internação , Lorazepam , Fenobarbital , Humanos , Fenobarbital/administração & dosagem , Fenobarbital/uso terapêutico , Lorazepam/administração & dosagem , Lorazepam/uso terapêutico , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/efeitos adversos , Hipnóticos e Sedativos/uso terapêutico , Delirium por Abstinência Alcoólica/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Convulsões/tratamento farmacológico , Respiração ArtificialRESUMO
While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kß, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kß preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kß is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kß is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kß. The critical role of the GTP-sensing activity of PI5P4Kß in cancer signifies this lipid kinase as a cancer therapeutic target.