Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Pharm Res ; 41(3): 441-462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351228

RESUMO

PURPOSE: This study was designed to verify a virtual population representing patients with nonalcoholic fatty liver disease (NAFLD) to support the implementation of a physiologically based pharmacokinetic (PBPK) modeling approach for prediction of disease-related changes in drug pharmacokinetics. METHODS: A virtual NAFLD patient population was developed in GastroPlus (v.9.8.2) by accounting for pathophysiological changes associated with the disease and proteomics-informed alterations in the abundance of metabolizing enzymes and transporters pertinent to drug disposition. The NAFLD population model was verified using exemplar drugs where elimination is influenced predominantly by cytochrome P450 (CYP) enzymes (chlorzoxazone, caffeine, midazolam, pioglitazone) or by transporters (rosuvastatin, 11C-metformin, morphine and the glucuronide metabolite of morphine). RESULTS: PBPK model predictions of plasma concentrations of all the selected drugs and hepatic radioactivity levels of 11C-metformin were consistent with the clinically-observed data. Importantly, the PBPK simulations using the virtual NAFLD population model provided reliable estimates of the extent of changes in key pharmacokinetic parameters for the exemplar drugs, with mean predicted ratios (NAFLD patients divided by healthy individuals) within 0.80- to 1.25-fold of the clinically-reported values, except for midazolam (prediction-fold difference of 0.72). CONCLUSION: A virtual NAFLD population model within the PBPK framework was successfully developed with good predictive capability of estimating disease-related changes in drug pharmacokinetics. This supports the use of a PBPK modeling approach for prediction of the pharmacokinetics of new investigational or repurposed drugs in patients with NAFLD and may help inform dose adjustments for drugs commonly used to treat comorbidities in this patient population.


Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Midazolam/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Biológicos , Derivados da Morfina
2.
Pharm Res ; 40(11): 2513-2523, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37349653

RESUMO

BACKGROUND: Understanding the impact of altered hepatic uptake and/or efflux on the hepatobiliary disposition of the imaging agents [99mTc]Mebrofenin (MEB) and [153Gd]Gadobenate dimeglumine (BOPTA) is important for proper estimation of liver function. METHODS: A multi-compartmental pharmacokinetic (PK) model describing MEB and BOPTA disposition in isolated perfused rat livers (IPRLs) was developed. The PK model was simultaneously fit to MEB and BOPTA concentration-time data in the extracellular space, hepatocytes, bile canaliculi, and sinusoidal efflux in livers from healthy rats, and to BOPTA concentration-time data in rats pretreated with monocrotaline (MCT). RESULTS: The model adequately described MEB and BOPTA disposition in each compartment. The hepatocyte uptake clearance was much higher for MEB (55.3 mL/min) than BOPTA (6.67 mL/min), whereas the sinusoidal efflux clearance for MEB (0.000831 mL/min) was lower than BOPTA (0.0127 mL/min). The clearance from hepatocytes to bile (CLbc) for MEB (0.658 mL/min) was similar to BOPTA (0.642 mL/min) in healthy rat livers. The BOPTA CLbc was reduced in livers from MCT-pretreated rats (0.496 mL/min), while the sinusoidal efflux clearance was increased (0.0644 mL/min). CONCLUSION: A PK model developed to characterize MEB and BOPTA disposition in IPRLs was used to quantify changes in the hepatobiliary disposition of BOPTA caused by MCT pretreatment of rats to induce liver toxicity. This PK model could be applied to simulate changes in the hepatobiliary disposition of these imaging agents in rats in response to altered hepatocyte uptake or efflux associated with disease, toxicity, or drug-drug interactions.


Assuntos
Fígado , Compostos Organometálicos , Ratos , Animais , Fígado/diagnóstico por imagem , Fígado/metabolismo , Hepatócitos , Compostos Organometálicos/farmacocinética , Bile , Transporte Biológico
3.
Toxicol Pathol ; 51(7-8): 405-413, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37982363

RESUMO

Drug-induced liver injury (DILI) remains a major concern in drug development from a patient safety perspective because it is the leading cause of acute liver failure. One mechanism of DILI is altered bile acid homeostasis and involves several hepatic bile acid transporters. Functional impairment of some hepatic bile acid transporters by drugs, disease, or genetic mutations may lead to toxic accumulation of bile acids within hepatocytes and increase DILI susceptibility. This review focuses on the role of hepatic bile acid transporters in DILI. Model systems, primarily in vitro and modeling tools, such as DILIsym, used in assessing transporter-mediated DILI are discussed. Due to species differences in bile acid homeostasis and drug-transporter interactions, key aspects and challenges associated with the use of preclinical animal models for DILI assessment are emphasized. Learnings are highlighted from three case studies of hepatotoxic drugs: troglitazone, tolvaptan, and tyrosine kinase inhibitors (dasatinib, pazopanib, and sorafenib). The development of advanced in vitro models and novel biomarkers that can reliably predict DILI is critical and remains an important focus of ongoing investigations to minimize patient risk for liver-related adverse reactions associated with medication use.


Assuntos
Proteínas de Transporte , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glicoproteínas de Membrana , Animais , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Ácidos e Sais Biliares
4.
J Pharmacol Exp Ther ; 380(2): 114-125, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794962

RESUMO

Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.


Assuntos
Antineoplásicos/toxicidade , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Cultivadas , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dasatinibe/toxicidade , Hepatócitos/metabolismo , Humanos , Indazóis/toxicidade , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Pirimidinas/toxicidade , Sorafenibe/toxicidade , Sulfonamidas/toxicidade , Simportadores/metabolismo
5.
Drug Metab Dispos ; 50(1): 58-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670777

RESUMO

Hepatobiliary imaging is increasingly used by pharmacologists to quantify liver concentrations of transporter-dependent drugs. However, liver imaging does not quantify concentrations in extracellular space, hepatocytes, and bile canaliculi. Our study compared the compartmental distribution of two hepatobiliary substrates gadobenate dimeglumine [BOPTA; 0.08 liver extraction ratio (ER)] and mebrofenin (MEB; 0.93 ER) in a model of perfused rat liver. A gamma counter placed over livers measured liver concentrations. Livers were preperfused with gadopentetate dimeglumine to measure extracellular concentrations. Concentrations coming from bile canaliculi and hepatocytes were calculated. Transporter activities were assessed by concentration ratios between compartments and pharmacokinetic parameters that describe the accumulation and decay profiles of hepatocyte concentrations. The high liver concentrations of MEB relied mainly on hepatocyte and bile canaliculi concentrations. In contrast, the three compartments contributed to the low liver concentrations obtained during BOPTA perfusion. Nonlinear regression analysis of substrate accumulation in hepatocytes revealed that cellular efflux is measurable ∼4 minutes after the start of perfusion. The hepatocyte-to-extracellular concentration ratio measured at this time point was much higher during MEB perfusion. BOPTA transport by multidrug resistance associated protein 2 induced an aquaporin-mediated water transport, whereas MEB transport did not. BOPTA clearance from hepatocytes to bile canaliculi was higher than MEB clearance. MEB did not efflux back to sinusoids, whereas BOPTA basolateral efflux contributed to the decrease in hepatocyte concentrations. In conclusion, our ex vivo model quantifies substrate compartmental distribution and transport across hepatocyte membranes and provides an additional understanding of substrate distribution in the liver. SIGNIFICANCE STATEMENT: When transporter-dependent drugs target hepatocytes, cellular concentrations are important to investigate. Low concentrations on cellular targets impair drug therapeutic effects, whereas excessive hepatocyte concentrations may induce cellular toxicity. With a gamma counter placed over rat perfused livers, we measured substrate concentrations in the extracellular space, hepatocytes, and bile canaliculi. Transport across hepatocyte membranes was calculated. The study provides an additional understanding of substrate distribution in the liver.


Assuntos
Meios de Contraste/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Compostos de Anilina/farmacocinética , Animais , Canalículos Biliares/metabolismo , Sistema Biliar/diagnóstico por imagem , Diagnóstico por Imagem , Espaço Extracelular/metabolismo , Genes erbB-2/genética , Glicina/farmacocinética , Hepatócitos/metabolismo , Técnicas In Vitro , Masculino , Modelos Biológicos , Dinâmica não Linear , Ratos , Ratos Sprague-Dawley
6.
Mol Pharmacol ; 100(6): 599-608, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599072

RESUMO

Organic solute transporter α/ß (OSTα/ß) is a bidirectional bile acid transporter localized on the basolateral membrane of hepatic, intestinal, and renal epithelial cells. OSTα/ß plays a critical role in intestinal bile acid reabsorption and is upregulated in hepatic diseases characterized by elevated bile acids, whereas genetic variants in SLC51A/B have been associated with clinical cholestasis. OSTα/ß also transports and is inhibited by commonly used medications. However, there is currently no high-resolution structure of OSTα/ß, and structure-function data for OSTα, the proposed substrate-binding subunit, are lacking. The present study addressed this knowledge gap and identified amino acids in OSTα that are important for bile acid transport. This was accomplished using computational modeling and site-directed mutagenesis of the OSTα subunit to generate OSTα/ß mutant cell lines. Out of the 10 OSTα/ß mutants investigated, four (S228K, T229S, Q269E, Q269K) exhibited decreased [3H]-taurocholate (TCA) uptake (ratio of geometric means relative to OSTα/ß wild type (WT) of 0.76, 0.75, 0.79, and 0.13, respectively). Three OSTα/ß mutants (S228K, Q269K, E305A) had reduced [3H]-TCA efflux % (ratio of geometric means relative to OSTα/ß WT of 0.86, 0.65, and 0.79, respectively). Additionally, several OSTα/ß mutants demonstrated altered expression and cellular localization when compared with OSTα/ß WT. In summary, we identified OSTα residues (Ser228, Thr229, Gln269, Glu305) in predicted transmembrane domains that affect expression of OSTα/ß and may influence OSTα/ß-mediated bile acid transport. These data advance our understanding of OSTα/ß structure/function and can inform future studies designed to gain further insight into OSTα/ß structure or to identify additional OSTα/ß substrates and inhibitors. SIGNIFICANCE STATEMENT: OSTα/ß is a clinically important transporter involved in enterohepatic bile acid recycling with currently no high-resolution protein structure and limited structure-function data. This study identified four OSTα amino acids (Ser228, Thr229, Gln269, Glu305) that affect expression of OSTα/ß and may influence OSTα/ß-mediated bile acid transport. These data can be utilized to inform future investigation of OSTα/ß structure and refine molecular modeling approaches to facilitate the identification of substrates and/or inhibitors of OSTα/ß.


Assuntos
Proteínas de Transporte/química , Glicoproteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Ácido Taurocólico/química , Ácido Taurocólico/metabolismo
7.
Small ; 16(7): e1906360, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31972070

RESUMO

Hepatotoxicity is a key concern in the clinical translation of nanotherapeutics because preclinical studies have consistently shown that nanotherapeutics accumulates extensively in the liver. However, clinical-stage nanotherapeutics have not shown increased hepatotoxicity. Factors that can contribute to the hepatotoxicity of nanotherapeutics beyond the intrinsic hepatotoxicity of nanoparticles (NPs) are poorly understood. Because of this knowledge gap, clinical translation efforts have avoided hepatotoxic molecules. By examining the hepatotoxicity of nanoformulations of known hepatotoxic compounds, it is demonstrated that nanotherapeutics are associated with lower hepatotoxicity than their small-molecule counterparts. It is also found that the reduced hepatotoxicity is related to the uptake of nanotherapeutics by macrophages in the liver. These findings can facilitate further development and clinical translation of nanotherapeutics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas , Preparações Farmacêuticas , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Sistemas de Liberação de Medicamentos/normas , Humanos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/toxicidade , Preparações Farmacêuticas/administração & dosagem
8.
J Pharmacol Exp Ther ; 373(2): 261-268, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127372

RESUMO

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography-tandem mass spectrometry-based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 µM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration-based DDIs caused by unexpected regulation of hepatic transporters by NR modulators. SIGNIFICANCE STATEMENT: This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration-based DDIs.


Assuntos
Hepatócitos/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado/agonistas , Proteômica/métodos , Sulfonamidas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/análise , Adulto , Células Cultivadas , Interações Medicamentosas , Feminino , Hepatócitos/metabolismo , Humanos , Hidrocarbonetos Fluorados/farmacocinética , Pessoa de Meia-Idade , Modelos Biológicos , Fator 1 de Transcrição de Octâmero/análise , Transportadores de Ânions Orgânicos Sódio-Independentes/análise , Sulfonamidas/farmacocinética
9.
Drug Metab Dispos ; 48(2): 116-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744810

RESUMO

Estradiol-17ß-glucuronide (E217G) is an estrogen metabolite that has cholestatic properties. In humans, circulating E217G is transported into hepatocytes by organic anion transporting polypeptides (OATPs) and is excreted into bile by multidrug-resistance associated protein 2 (MRP2). E217G is also a substrate of the basolateral efflux transporters MRP3 and MRP4, which translocate E217G from hepatocytes to blood. However, the contribution of basolateral efflux to hepatocyte disposition of E217G has not been evaluated previously. To address this question, E217G disposition was studied in sandwich-cultured human hepatocytes and mechanistic modeling was applied to calculate clearance values (mean ± S.D.) for uptake, intrinsic biliary excretion (CLint,bile) and intrinsic basolateral efflux (CLint,BL). The biliary excretion index of E217G was 45% ± 6%. The CLint,BL of E217G [0.18 ± 0.03 (ml/min)/g liver) was 1.6-fold higher than CLint,bile [0.11 ± 0.06 (ml/min)/g liver]. Simulations were performed to study the effects of increased CLint,BL and a concomitant decrease in CLint,bile on hepatic E217G exposure. Results demonstrated that increased CLint,BL can effectively reduce hepatocellular and biliary exposure to this potent cholestatic agent. Simulations also revealed that basolateral efflux can compensate for impaired biliary excretion and, vice versa, to avoid accumulation of E217G in hepatocytes. However, when both clearance processes are impaired by 90%, hepatocyte E217G exposure increases up to 10-fold. These data highlight the contribution of basolateral efflux transport, in addition to MRP2-mediated biliary excretion, to E217G disposition in human hepatocytes. This elimination route could be important, especially in cases where basolateral efflux is induced, such as cholestasis. SIGNIFICANCE STATEMENT: The disposition of the cholestatic estrogen metabolite estradiol-17ß-glucuronide (E217G) was characterized in sandwich-cultured human hepatocytes. The intrinsic basolateral efflux clearance was estimated to be 1.6-fold higher than the intrinsic biliary excretion clearance, emphasizing the contribution of basolateral elimination in addition to biliary excretion. Simulations highlight how hepatocytes can effectively cope with increased E217G through the regulation of both basolateral and biliary transporters.


Assuntos
Estradiol/análogos & derivados , Hepatócitos/metabolismo , Fígado/metabolismo , Adulto , Bile/metabolismo , Transporte Biológico/fisiologia , Células Cultivadas , Estradiol/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
10.
Mol Pharm ; 17(5): 1527-1537, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32212738

RESUMO

Compared with the significant number of studies reporting altered abundance and function of drug transporters at the blood-brain barrier (BBB) in Alzheimer's disease (AD), the impact of AD on the abundance of intestinal drug transporters and the subsequent effects on oral drug absorption have received little attention. We have reported the altered abundance of some small intestinal drug transporters in a familial mouse model of AD; however, whether this leads to altered oral drug absorption is unknown. The current study examined plasma concentrations of caffeine and diazepam (markers for transcellular passive transport), digoxin (P-glycoprotein substrate), and valsartan (multidrug resistance-associated protein 2 substrate) following oral administration to 8-10 month old female wild-type (WT) and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a commonly used mouse model of familial AD. The plasma exposure of valsartan and digoxin was significantly (p < 0.05) lower in APP/PS1 animals compared with WT mice, whereas the plasma concentrations of the passive transcellular markers caffeine and diazepam did not significantly differ between the two genotypes. To assess whether the reduced oral absorption of valsartan and digoxin was due to decreased intestinal transport, the ex vivo transport of the previously mentioned drugs and mannitol (a marker of paracellular transport) across the jejunum of WT and APP/PS1 mice was assessed over 120 min. In line with the in vivo absorption studies, the permeability of caffeine and diazepam did not significantly differ between WT and APP/PS1 mice. The permeability of 3H-digoxin through the APP/PS1 mouse jejunum was lower than that measured through the WT jejunum; the average amount (relative to dose applied) permeating the tissue over 120 min was 0.22 ± 0.11% (mean ± SD) for the APP/PS1 jejunum and 0.85 ± 0.3% for the WT jejunum. A 1.9-fold reduction in the average amount of valsartan permeating the jejunum of APP/PS1 mice relative to that of WT mice was also detected. Although no apparent morphological alterations were observed in the jejunal tissue of APP/PS1 mice, the permeability of 14C-mannitol across the jejunum from APP/PS1 mice was lower than that across the WT jejunum (Papp= 10.7 ± 3.7 × 10-6 and 6.0 ± 3.4 × 10-6 cm/s, respectively), suggesting tightened paracellular junctions in APP/PS1 mice. These studies are the first to demonstrate, in APP/PS1 mice, reduced intestinal permeability and the absorption of drugs commonly prescribed to people with AD for their comorbidities. If these findings translate to people with AD, then modified dosing regimens may be necessary for selected drugs to ensure that their plasma concentrations remain in the effective range.


Assuntos
Doença de Alzheimer/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Administração Oral , Animais , Cafeína/farmacocinética , Diazepam/farmacocinética , Digoxina/farmacocinética , Modelos Animais de Doenças , Feminino , Jejuno/metabolismo , Camundongos , Permeabilidade , Valsartana/farmacocinética
11.
Drug Metab Dispos ; 47(10): 1222-1230, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371422

RESUMO

Human hepatoma cell lines are useful for evaluation of drug-induced hepatotoxicity, hepatic drug disposition, and drug-drug interactions. However, their applicability is compromised by aberrant expression of hepatobiliary transporters. This study was designed to evaluate whether extracellular matrix (Matrigel) overlay and dexamethasone (DEX) treatment would support cellular maturation of long-term HuH-7 hepatoma cell cultures and improve the expression, localization, and activity of canalicular ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and bile salt export pump (BSEP/ABCB11). Matrigel overlay promoted the maturation of HuH-7 cells toward cuboidal, hepatocyte-like cells displaying bile canaliculi-like structures visualized by staining for filamentous actin (F-actin), colocalization of MRP2 with F-actin, and by accumulation of the MRP2 substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) within the tubular canaliculi. The cellular phenotype was rather homogenous in the Matrigel-overlaid cultures, whereas the standard HuH-7 cultures contained both hepatocyte-like cells and flat epithelium-like cells. Only Matrigel-overlaid HuH-7 cells expressed MDR1 at the canaliculi and excreted the MDR1 probe substrate digoxin into biliary compartments. DEX treatment resulted in more elongated and branched canaliculi and restored canalicular expression and function of BSEP. These findings suggest that hepatocyte polarity, elongated canalicular structures, and proper localization and function of canalicular ABC transporters can be recovered, at least in part, in human hepatoma HuH-7 cells by applying the modified culture conditions. SIGNIFICANCE STATEMENT: We report the first demonstration that proper localization and function of canalicular ABC transporters can be recovered in human hepatoma HuH-7 cells by modification of cell culture conditions. Matrigel overlay and dexamethasone supplementation increased the proportion of hepatocyte-like cells, strongly augmented the canalicular structures between the cells, and restored the localization and function of key canalicular ABC transporters. These results will facilitate the development of reproducible, economical, and easily achievable liver cell models for drug development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Canalículos Biliares/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Canalículos Biliares/efeitos dos fármacos , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colágeno/farmacologia , Dexametasona/farmacologia , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Humanos , Laminina/farmacologia , Proteína 2 Associada à Farmacorresistência Múltipla , Proteoglicanas/farmacologia
12.
Drug Metab Dispos ; 47(2): 155-163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30504136

RESUMO

Tolvaptan, a vasopressin V2-receptor antagonist, has demonstrated efficacy in slowing kidney function decline in patients with autosomal dominant polycystic kidney disease (ADPKD). In the pivotal clinical trial, the incidence of elevated liver enzymes was higher in patients receiving tolvaptan compared with placebo. Adjudication by a panel of expert hepatologists concluded a causal link of tolvaptan to liver injury in patients with ADPKD. An ex situ isolated perfused liver (IPL) study of tolvaptan disposition was undertaken in a rodent model of ADPKD, the polycystic kidney (PCK) rat (n = 5), and compared with wild-type (WT) Sprague-Dawley rats (n = 6). Livers were perfused with tolvaptan, followed by a tolvaptan-free washout phase. Total recovery (mean ± S.D. percentage of dose; PCK vs. WT) of tolvaptan and two metabolites, DM-4103 and DM-4107, quantified by liquid chromatography-tandem mass spectroscopy, was 58.14% ± 24.72% vs. 43.40% ± 18.11% in liver, 20.10% ± 9.15% vs. 21.17% ± 12.51% in outflow perfusate, and 0.08% ± 0.01% vs. 0.39% ± 0.32% in bile. DM-4103 recovery (mean ± S.D. percentage of dose) was decreased in PCK vs. WT bile (<0.01% ± <0.01% vs. 0.02% ± 0.01%; P = 0.0037), and DM-4107 recovery was increased in PCK vs. WT outflow perfusate (1.60% ± 0.57% vs. 0.43% ± 0.29%; P = 0.0017). A pharmacokinetic compartmental model assuming first-order processes was developed to describe the rate vs. time profiles of tolvaptan and DM-4103 + DM-4107 in rat IPLs. The model-derived estimate of tolvaptan's biliary clearance was significantly decreased in PCK compared with WT IPLs. The model predicted greater hepatocellular concentrations of tolvaptan and DM-4103 + DM-4107 in PCK compared with WT IPLs. Increased hepatocellular exposure to tolvaptan and metabolites may contribute to the hepatotoxicity in patients with ADPKD treated with tolvaptan.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Eliminação Hepatobiliar , Rim Policístico Autossômico Dominante/tratamento farmacológico , Tolvaptan/efeitos adversos , Animais , Modelos Animais de Doenças , Humanos , Técnicas In Vitro/métodos , Rim/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/cirurgia , Masculino , Perfusão/métodos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Superfície Celular/genética , Tolvaptan/metabolismo , Tolvaptan/farmacocinética
13.
Drug Metab Dispos ; 47(8): 899-906, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160314

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a common form of inherited polycystic kidney disease (PKD) and is a leading cause of kidney failure. Fluid-filled cysts develop in the kidneys of patients with ADPKD, and cysts often form in their liver and other organs. Previous data have shown that bile acids are increased in the liver of polycystic kidney (PCK) rats, a rodent model of PKD; these changes may be associated with alterations in liver transporter expression and function. However, the impact of PKD on hepatic transporters has not been characterized. Therefore, this preclinical study was designed to investigate hepatic transporter expression and function in PCK compared with wild-type (WT) Sprague-Dawley rats. Transporter gene expression was measured by quantitative polymerase chain reaction, and protein levels were quantified by Western blot and liquid chromatography-tandem mass spectroscopy (LC-MS/MS)-based proteomic analysis in rat livers. Transporter function was assessed in isolated perfused livers (IPLs), and biliary and hepatic total glutathione content was measured. Protein expression of Mrp2 and Oatp1a4 was decreased 3.0-fold and 2.9-fold, respectively, in PCK rat livers based on Western blot analysis. Proteomic analysis confirmed a decrease in Mrp2 and a decrease in Oatp1a1 expression (PCK/WT ratios, 0.368 ± 0.098 and 0.563 ± 0.038, respectively; mean ± S.D.). The biliary excretion of 5(6)-carboxy-2',7'-dichlorofluorescein, a substrate of Oatp1a1, Mrp2, and Mrp3, was decreased 28-fold in PCK compared with WT rat IPLs. Total glutathione was significantly reduced in the bile of PCK rats. Differences in hepatic transporter expression and function may contribute to altered disposition of Mrp2 and Oatp substrates in PKD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Eliminação Hepatobiliar , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Animais , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Perfilação da Expressão Gênica , Glutationa/análise , Glutationa/metabolismo , Humanos , Masculino , Proteômica , Ratos
14.
Drug Metab Dispos ; 47(3): 283-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606729

RESUMO

The gut microbiota modifies endogenous primary bile acids (BAs) to produce exogenous secondary BAs, which may be further metabolized by cytochrome P450 enzymes (P450s). Our primary aim was to examine how the host adapts to the stress of microbe-derived secondary BAs by P450-mediated oxidative modifications on the steroid nucleus. Five unconjugated tri-hydroxyl BAs that were structurally and/or biologically associated with deoxycholate (DCA) were determined in human biologic samples by liquid chromatography-tandem mass spectrometry in combination with enzyme-digestion techniques. They were identified as DCA-19-ol, DCA-6ß-ol, DCA-5ß-ol, DCA-6α-ol, DCA-1ß-ol, and DCA-4ß-ol based on matching in-laboratory synthesized standards. Metabolic inhibition assays in human liver microsomes and recombinant P450 assays revealed that CYP3A4 and CYP3A7 were responsible for the regioselective oxidations of both DCA and its conjugated forms, glycodeoxycholate (GDCA) and taurodeoxycholate (TDCA). The modification of secondary BAs to tertiary BAs defines a host liver (primary BAs)-gut microbiota (secondary BAs)-host liver (tertiary BAs) axis. The regioselective oxidations of DCA, GDCA, and TDCA by CYP3A4 and CYP3A7 may help eliminate host-toxic DCA species. The 19- and 4ß-hydroxylation of DCA species demonstrated outstanding CYP3A7 selectivity and may be useful as indicators of CYP3A7 activity.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Ácido Desoxicólico/metabolismo , Microbioma Gastrointestinal/fisiologia , Adulto , Ácido Desoxicólico/sangue , Ácido Desoxicólico/toxicidade , Ácido Desoxicólico/urina , Feminino , Voluntários Saudáveis , Humanos , Hidroxilação , Fígado/metabolismo , Masculino , Microssomos Hepáticos , Oxirredução , Adulto Jovem
15.
Mol Pharm ; 16(3): 1406-1411, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30608704

RESUMO

The bile salt export pump (BSEP) is the primary canalicular transporter responsible for the secretion of bile acids from hepatocytes into bile canaliculi, and inhibition of this transporter has been associated with drug-induced liver injury (DILI). A common variant (rs2287622; p.V444A) in the gene encoding BSEP has been associated with an increased risk of cholestatic DILI. Although p.444V BSEP (reference) and p.444A BSEP (variant) do not differ in their transport kinetics of taurocholic acid (TCA), transport of the more abundant glycocholic acid (GCA) has not been investigated. Importantly, differences in the susceptibility of p.444V and p.444A BSEP to inhibition by drugs causing cholestatic DILI have not been investigated. To address these issues, the transport kinetics of GCA were evaluated by incubating membrane vesicles expressing either p.444V or p.444A BSEP with GCA over a range of concentrations (1, 10, 25, 50, and 100 µM). The abilities of commonly used cholestatic medications to inhibit the transport of TCA and GCA by the reference and variant proteins were compared. Resulting data indicated that GCA transport kinetics for reference and variant BSEP followed Michaelis-Menten kinetics and were not statistically different [ Vmax values of 1132 ± 246 and 959 ± 256 pmol min-1 (mg of protein)-1, respectively, and Km values of 32.7 ± 18.2 and 45.7 ± 25.5 µM, respectively]. There were no statistically significant differences between the reference and variant BSEP in the inhibition of TCA or GCA transport by the cholestatic drugs tested. In conclusion, differential inhibition of TCA or GCA transport cannot account for an association between the variant BSEP and the risk for cholestatic DILI due to the drugs tested.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/metabolismo , Colagogos e Coleréticos/uso terapêutico , Colestase/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Baculoviridae , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colagogos e Coleréticos/farmacologia , Dipiridamol/farmacologia , Eritromicina/farmacologia , Ácido Glicocólico/antagonistas & inibidores , Ácido Glicocólico/metabolismo , Cetoconazol/farmacologia , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Spodoptera/virologia , Ácido Taurocólico/antagonistas & inibidores , Ácido Taurocólico/metabolismo , Vesículas Transportadoras/metabolismo
16.
Mol Pharm ; 16(1): 238-246, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30481467

RESUMO

Drug interactions with the organic solute transporter alpha/beta (OSTα/ß) are understudied even though OSTα/ß is an important transporter that is expressed in multiple human tissues including the intestine, kidneys, and liver. In this study, an in vitro method to identify novel OSTα/ß inhibitors was first developed using OSTα/ß-overexpressing Flp-In 293 cells. Incubation conditions were optimized using previously reported OSTα/ß inhibitors. A method including a 10 min preincubation step with the test compound was used to screen for OSTα/ß inhibition by 77 structurally diverse compounds and fixed-dose combinations. Seven compounds and one fixed-dose combination (100 µM final concentration) inhibited OSTα/ß-mediated dehydroepiandrosterone sulfate (DHEAS) uptake by >25%. Concentration-dependent OSTα/ß inhibition was evaluated for all putative inhibitors (atorvastatin, ethinylestradiol, fidaxomicin, glycochenodeoxycholate, norgestimate, troglitazone, and troglitazone sulfate). Ethinylestradiol, fidaxomicin, and troglitazone sulfate yielded a clear concentration-inhibition response with IC50 values <200 µM. Among all tested compounds, there was no clear association between physicochemical properties, the severity of hepatotoxicity, and the degree of OSTα/ß inhibition. This study utilized a novel in vitro method to identify OSTα/ß inhibitors and, for the first time, provided IC50 values for OSTα/ß inhibition. These data provide evidence that several drugs, some of which are associated with cholestatic drug-induced liver injury, may impair the function of the OSTα/ß transporter.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Sulfato de Desidroepiandrosterona/metabolismo , Humanos , Cinética , Análise de Componente Principal
17.
Br J Clin Pharmacol ; 85(10): 2351-2359, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31269278

RESUMO

AIMS: Patients with Alzheimer's disease (AD), the most common form of dementia, have reduced P-glycoprotein (P-gp) function at the blood-brain barrier. However, the effect of AD on P-gp function in peripheral organs, and the impact on medication efficacy and toxicity is unknown. In this study, clinical chart review and physiologically based pharmacokinetic (PBPK) modelling were employed to determine whether disease-associated changes in P-gp could be assessed from clinically measured digoxin concentrations in patients without and with dementia. METHODS: A retrospective chart review was conducted to compare digoxin dose and concentrations between cohorts. A PBPK model was developed to simulate changes in digoxin concentrations at single and multiple 62.5 and 125 µg/d doses due to reduced P-gp function in peripheral organs. RESULTS: Digoxin concentrations were similar between the nondementia (n = 75) and dementia (n = 72) cohorts (mean ± standard deviation; 0.64 ± 0.31 and 0.60 ± 0.34 ng/mL, respectively; -0.06 to 0.15, 95% confidence interval of difference). PBPK simulations showed that reduced P-gp function resulted in a significant increase in digoxin exposure (AUC), but not in Cmax . For example, when a 2-fold reduction in P-gp function was simulated in older people following multiple 125 µg/d digoxin doses, the AUC over the last dosing interval was increased compared to baseline (24.29 ± 3.94 vs 17.04 ± 3.46 ng/mL*h; 4.52 to 9.98); however, Cmax was similar (1.38 ± 0.20 vs 0.99 ± 0.18 ng/mL; -2.33 to 3.13). CONCLUSION: Clinically measured digoxin concentrations were not statistically different in patients with dementia. Based on PBPK simulations, digoxin AUC may need to be evaluated to adequately assess the impact of reduced P-gp function in peripheral organs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Cardiotônicos/administração & dosagem , Demência/complicações , Digoxina/administração & dosagem , Modelos Biológicos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Área Sob a Curva , Barreira Hematoencefálica/metabolismo , Cardiotônicos/farmacocinética , Simulação por Computador , Digoxina/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Estudos Retrospectivos
18.
J Pharm Pharm Sci ; 22(1): 567-575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31804919

RESUMO

PURPOSE: Probe substrates are used routinely to assess transporter function in vitro. Administration of multiple probe substrates together as a "cocktail" in sandwich-cultured human hepatocytes (SCHH) could increase the throughput of transporter function assessment in a physiologically-relevant in vitro system. This study was designed to compare transporter function between cocktail and single agent administration in SCHH. METHODS: Rosuvastatin, digoxin, and metformin were selected as probe substrates of hepatic transporters OATP1B1, OATP1B3, BCRP, P-gp, and OCT1. Total accumulation (Cells+Bile) and biliary excretion index (BEI) values derived from administration of the cocktail were compared to values obtained after administration of single agents in the absence and presence of a model inhibitor, erythromycin estolate. RESULTS: For rosuvastatin and metformin accumulation, the ratio of means [90% confidence interval (CI)] for cocktail to single agent administration was 100% [94%, 106%] and 90% [82%, 99%], respectively. Therefore, the cocktail and single-agent mode of administration were deemed equivalent per standard equivalence criterion of 80-120% for rosuvastatin and metformin accumulation, but not for digoxin accumulation (77% [62%, 92%]). The ratio of means [90% CI] for rosuvastatin BEI values between the two administration modes (105% [97%, 114%]) also was deemed equivalent. The ratio for digoxin BEI values between the two administration modes was 99% [78%, 120%]. In the presence of erythromycin estolate, the two administration modes were deemed equivalent for evaluation of rosuvastatin, digoxin, and metformin accumulation; the ratio of means [90% CI] was 104% [94%, 115%], 94% [82%, 105%], and 100% [88%, 111%], respectively. However, rosuvastatin and digoxin BEI values were low and quite variable in the presence of the inhibitor, so the BEI results were inconclusive. CONCLUSIONS: These data suggest that rosuvastatin and metformin can be administered as a cocktail to evaluate the function of OATP1B1, OATP1B3, BCRP, and OCT1 in SCHH, and that digoxin may not be an ideal component of such a cocktail.


Assuntos
Técnicas de Cultura de Células , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sondas Moleculares/química , Transporte Biológico , Células Cultivadas , Digoxina/administração & dosagem , Digoxina/química , Digoxina/metabolismo , Estolato de Eritromicina/administração & dosagem , Estolato de Eritromicina/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Metformina/administração & dosagem , Metformina/química , Metformina/metabolismo , Sondas Moleculares/administração & dosagem , Sondas Moleculares/metabolismo , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/metabolismo
19.
Am J Physiol Gastrointest Liver Physiol ; 314(5): G597-G609, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420067

RESUMO

The heteromeric steroid transporter organic solute transporter α/ß (OSTα/ß, SLC51A/B) was discovered over a decade ago, but its physiological significance in the liver remains uncertain. A major challenge has been the lack of suitable models expressing OSTα/ß. Based on observations first reported here that hepatic OSTα/ß is upregulated in nonalcoholic steatohepatitis, the aim of this research was to develop an in vitro model to evaluate OSTα/ß function and interaction with drugs and bile acids. OSTα/ß expression in human liver tissue was analyzed by quantitative RT-PCR, Western blotting, and immunofluorescence. Radiolabeled compounds were used to determine OSTα/ß-mediated transport in the established in vitro model. The effect of bile acids and drugs, including those associated with cholestatic drug-induced liver injury, on OSTα/ß-mediated transport was evaluated. Expression of OSTα/ß was elevated in the liver of patients with nonalcoholic steatohepatitis and primary biliary cholangitis, whereas hepatocyte expression of OSTα/ß was low in control liver tissue. Studies in the novel cell-based system showed rapid and linear OSTα/ß-mediated transport for all tested compounds: dehydroepiandrosterone sulfate, digoxin, estrone sulfate, and taurocholate. The interaction study with 26 compounds revealed novel OSTα/ß inhibitors: a biomarker for cholestasis, glycochenodeoxycholic acid; the major metabolite of troglitazone, troglitazone sulfate; and a macrocyclic antibiotic, fidaxomicin. Additionally, some drugs (e.g., digoxin) consistently stimulated taurocholate uptake in OSTα/ß-overexpressing cells. Our findings demonstrate that OSTα/ß is an important transporter in liver disease and imply a role for this transporter in bile acid-bile acid and drug-bile acid interactions, as well as cholestatic drug-induced liver injury. NEW & NOTEWORTHY The organic solute transporter OSTα/ß is highly expressed in hepatocytes of liver tissue obtained from patients with nonalcoholic steatohepatitis and primary biliary cholangitis. OSTα/ß substrates exhibit rapid, linear, and concentration-driven transport in an OSTα/ß-overexpressing cell line. Drugs associated with hepatotoxicity modulate OSTα/ß-mediated taurocholate transport. These data suggest that hepatic OSTα/ß plays an essential role in patients with cholestasis and may have important clinical implications for bile acid and drug disposition.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática Biliar/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Taurocólico/metabolismo , Ácidos e Sais Biliares/metabolismo , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , Linhagem Celular , Colestase/metabolismo , Feminino , Ácido Glicoquenodesoxicólico/metabolismo , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade
20.
J Pharmacol Exp Ther ; 365(2): 413-421, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29487110

RESUMO

The farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in bile acid homeostasis. FXR agonists, obeticholic acid (OCA) and chenodeoxycholic acid (CDCA), increase mRNA expression of efflux transporters in sandwich-cultured human hepatocytes (SCHH). This study evaluated the effects of OCA and CDCA treatment on the uptake, basolateral efflux, and biliary excretion of a model bile acid, taurocholate (TCA), in SCHH. In addition, changes in the protein expression of TCA uptake and efflux transporters were investigated. SCHH were treated with 1 µM OCA, 100 µM CDCA, or vehicle control for 72 hours followed by quantification of deuterated TCA uptake and efflux over time in Ca2+-containing and Ca2+-free conditions (n = 3 donors). A mechanistic pharmacokinetic model was fit to the TCA mass-time data to obtain estimates for total uptake clearance (CLUptake), total intrinsic basolateral efflux clearance (CLint,BL), and total intrinsic biliary clearance (CLint,Bile). Modeling results revealed that FXR agonists significantly increased CLint,BL by >6-fold and significantly increased CLint,Bile by 2-fold, with minimal effect on CLUptake Immunoblotting showed that protein levels of the basolateral transporter subunits organic solute transporter α and ß (OSTα and OSTß) in FXR agonist-treated SCHH were significantly induced by >2.5- and 10-fold, respectively. FXR agonist-mediated changes in the expression of other TCA transporters in SCHH were modest. In conclusion, this is the first report demonstrating that OCA and CDCA increased TCA efflux in SCHH, which contributed to reduced intracellular TCA concentrations. Increased basolateral efflux of TCA was consistent with increased OSTα/ß protein expression in OCA- and CDCA-treated SCHH.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Adulto , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Feminino , Hepatócitos/citologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA