Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197278

RESUMO

Evasion from drug-induced apoptosis is a crucial mechanism of cancer treatment resistance. The proapoptotic protein NOXA marks an aggressive pancreatic ductal adenocarcinoma (PDAC) subtype. To identify drugs that unleash the death-inducing potential of NOXA, we performed an unbiased drug screening experiment. In NOXA-deficient isogenic cellular models, we identified an inhibitor of the transcription factor heterodimer CBFß/RUNX1. By genetic gain and loss of function experiments, we validated that the mode of action depends on RUNX1 and NOXA. Of note is that RUNX1 expression is significantly higher in PDACs compared to normal pancreas. We show that pharmacological RUNX1 inhibition significantly blocks tumor growth in vivo and in primary patient-derived PDAC organoids. Through genome-wide analysis, we detected that RUNX1-loss reshapes the epigenetic landscape, which gains H3K27ac enrichment at the NOXA promoter. Our study demonstrates a previously unknown mechanism of NOXA-dependent cell death, which can be triggered pharmaceutically. Therefore, our data show a way to target a therapy-resistant PDAC, an unmet clinical need.


Assuntos
Apoptose/genética , Carcinoma Ductal Pancreático/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Expressão Gênica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Mutações Sintéticas Letais , Carcinoma Ductal Pancreático/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Humanos , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Regulação para Cima
2.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833911

RESUMO

After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3-5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.


Assuntos
Transplante de Rim , Transplante de Rim/efeitos adversos , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T , Apoptose , Análise de Sequência de RNA
3.
Hum Mol Genet ; 29(15): 2535-2550, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32628253

RESUMO

The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat-Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2's gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.


Assuntos
Cromatina/ultraestrutura , Elementos Facilitadores Genéticos/genética , Doença de Hirschsprung/genética , Deficiência Intelectual/genética , Microcefalia/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Fácies , Regulação da Expressão Gênica/genética , Doença de Hirschsprung/patologia , Proteínas de Homeodomínio/genética , Humanos , Deficiência Intelectual/patologia , Camundongos , Microcefalia/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/ultraestrutura , Sequências Reguladoras de Ácido Nucleico
4.
Am J Hum Genet ; 101(1): 123-129, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602422

RESUMO

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital disorder characterized by loss of smooth muscle contraction in the bladder and intestine. To date, three genes are known to be involved in MMIHS pathogenesis: ACTG2, MYH11, and LMOD1. However, for approximately 10% of affected individuals, the genetic cause of the disease is unknown, suggesting that other loci are most likely involved. Here, we report on three MMIHS-affected subjects from two consanguineous families with no variants in the known MMIHS-associated genes. By performing homozygosity mapping and whole-exome sequencing, we found homozygous variants in myosin light chain kinase (MYLK) in both families. We identified a 7 bp duplication (c.3838_3844dupGAAAGCG [p.Glu1282_Glyfs∗51]) in one family and a putative splice-site variant (c.3985+5C>A) in the other. Expression studies and splicing assays indicated that both variants affect normal MYLK expression. Because MYLK encodes an important kinase required for myosin activation and subsequent interaction with actin filaments, it is likely that in its absence, contraction of smooth muscle cells is impaired. The existence of a conditional-Mylk-knockout mouse model with severe gut dysmotility and abnormal function of the bladder supports the involvement of this gene in MMIHS pathogenesis. In aggregate, our findings implicate MYLK as a gene involved in the recessive form of MMIHS, confirming that this disease of the visceral organs is heterogeneous with a myopathic origin.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/genética , Colo/anormalidades , Genes Recessivos , Pseudo-Obstrução Intestinal/enzimologia , Pseudo-Obstrução Intestinal/genética , Mutação/genética , Quinase de Cadeia Leve de Miosina/genética , Bexiga Urinária/anormalidades , Sequência de Bases , Colo/enzimologia , Feminino , Homozigoto , Humanos , Masculino , Linhagem , Bexiga Urinária/enzimologia
5.
Proc Natl Acad Sci U S A ; 114(13): E2739-E2747, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292896

RESUMO

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.


Assuntos
Anormalidades Múltiplas/genética , Autoantígenos/fisiologia , Colo/anormalidades , Proteínas do Citoesqueleto/fisiologia , Pseudo-Obstrução Intestinal/genética , Proteínas Musculares/fisiologia , Bexiga Urinária/anormalidades , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Códon sem Sentido , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Recém-Nascido , Camundongos , Contração Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso/fisiologia
6.
Gastroenterology ; 155(1): 118-129.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29601828

RESUMO

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS: We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS: Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS: In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas Hedgehog/genética , Doença de Hirschsprung/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteína Gli3 com Dedos de Zinco/genética , Animais , Células COS , Chlorocebus aethiops , Família , Feminino , Predisposição Genética para Doença , Variação Genética , Células HEK293 , Humanos , Masculino , Morfolinos , Países Baixos , Linhagem , Isoformas de Proteínas , Proto-Oncogene Mas , Análise de Sequência de DNA , Transdução de Sinais , Peixe-Zebra
7.
Hum Mol Genet ; 25(3): 571-83, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26647307

RESUMO

Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin γ-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Colo/anormalidades , Mucosa Intestinal/metabolismo , Pseudo-Obstrução Intestinal/genética , Contração Muscular/genética , Músculo Liso/metabolismo , Mutação de Sentido Incorreto , Bexiga Urinária/anormalidades , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Actinas/química , Actinas/metabolismo , Colo/metabolismo , Colo/patologia , Evolução Fatal , Feminino , Expressão Gênica , Heterozigoto , Humanos , Recém-Nascido , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Intestinos/patologia , Masculino , Simulação de Dinâmica Molecular , Músculo Liso/patologia , Linhagem , Multimerização Proteica , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Adulto Jovem
8.
Genet Med ; 20(5): 480-485, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29121006

RESUMO

PurposeNoninvasive prenatal screening (NIPS) using cell-free DNA in maternal blood is highly sensitive for detecting fetal trisomies 21, 18, and 13. Using a genome-wide approach, other chromosome anomalies can also be detected. We report on the origin, frequency, and clinical significance of these other chromosome aberrations found in pregnancies at risk for trisomy 21, 18, or 13.MethodsWhole-genome shallow massively parallel sequencing was used and all autosomes were analyzed.ResultsIn 78 of 2,527 cases (3.1%) NIPS was indicative of trisomy 21, 18, or 13, and in 41 (1.6%) of other chromosome aberrations. The latter were of fetal (n = 10), placental (n = 22), maternal (n = 1) or unknown (n = 7). One case lacked cytogenetic follow-up. Nine of the 10 fetal cases were associated with an abnormal phenotype. Thirteen of the 22 (59%) placental aberrations were associated with fetal congenital anomalies and/or poor fetal growth (

Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Testes Genéticos , Diagnóstico Pré-Natal , Trissomia , Variações do Número de Cópias de DNA , Feminino , Testes Genéticos/métodos , Genômica/métodos , Humanos , Placenta/metabolismo , Gravidez , Resultado da Gravidez , Diagnóstico Pré-Natal/métodos , Sequenciamento Completo do Genoma
9.
Mov Disord ; 33(11): 1814-1819, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30398675

RESUMO

BACKGROUND: The genetic bases of PD in sub-Saharan African (SSA) populations remain poorly characterized, and analysis of SSA families with PD might lead to the discovery of novel disease-related genes. OBJECTIVES: To investigate the clinical features and identify the disease-causing gene in a black South African family with 3 members affected by juvenile-onset parkinsonism and intellectual disability. METHODS: Clinical evaluation, neuroimaging studies, whole-exome sequencing, homozygosity mapping, two-point linkage analysis, and Sanger sequencing of candidate variants. RESULT: A homozygous 28-nucleotide frameshift deletion in the PTRHD1 coding region was identified in the 3 affected family members and linked to the disease with genome-wide significant evidence. PTRHD1 was recently nominated as the disease-causing gene in two Iranian families, each containing 2 siblings with similar phenotypes and homozygous missense mutations. CONCLUSION: Together with the previous reports, we provide conclusive evidence that loss-of-function mutations in PTRHD1 cause autosomal-recessive juvenile parkinsonism and intellectual disability. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Saúde da Família , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação/genética , Transtornos Parkinsonianos/genética , Adulto , África Subsaariana , Análise Mutacional de DNA , Feminino , Humanos , Deficiência Intelectual/complicações , Masculino , Transtornos Parkinsonianos/complicações
10.
Blood ; 125(12): 1957-67, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25538045

RESUMO

Sp1 and Sp3 belong to the specificity proteins (Sp)/Krüppel-like transcription factor family. They are closely related, ubiquitously expressed, and recognize G-rich DNA motifs. They are thought to regulate generic processes such as cell-cycle and growth control, metabolic pathways, and apoptosis. Ablation of Sp1 or Sp3 in mice is lethal, and combined haploinsufficiency results in hematopoietic defects during the fetal stages. Here, we show that in adult mice, conditional pan-hematopoietic (Mx1-Cre) ablation of either Sp1 or Sp3 has minimal impact on hematopoiesis, whereas the simultaneous loss of Sp1 and Sp3 results in severe macrothrombocytopenia. This occurs in a cell-autonomous manner as shown by megakaryocyte-specific (Pf4-Cre) double-knockout mice. We employed flow cytometry, cell culture, and electron microscopy and show that although megakaryocyte numbers are normal in bone marrow and spleen, they display a less compact demarcation membrane system and a striking inability to form proplatelets. Through megakaryocyte transcriptomics and platelet proteomics, we identified several cytoskeleton-related proteins and downstream effector kinases, including Mylk, that were downregulated upon Sp1/Sp3 depletion, providing an explanation for the observed defects in megakaryopoiesis. Supporting this notion, selective Mylk inhibition by ML7 affected proplatelet formation and stabilization and resulted in defective ITAM receptor-mediated platelet aggregation.


Assuntos
Plaquetas/citologia , Megacariócitos/citologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Animais , Azepinas/química , Plaquetas/metabolismo , Medula Óssea/metabolismo , Citometria de Fluxo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Knockout , Naftalenos/química , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteoma , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Baço/metabolismo , Trombocitopenia/metabolismo , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(3): 996-1001, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24335803

RESUMO

Recent studies of genome-wide chromatin interactions have revealed that the human genome is partitioned into many self-associating topological domains. The boundary sequences between domains are enriched for binding sites of CTCC-binding factor (CTCF) and the cohesin complex, implicating these two factors in the establishment or maintenance of topological domains. To determine the role of cohesin and CTCF in higher-order chromatin architecture in human cells, we depleted the cohesin complex or CTCF and examined the consequences of loss of these factors on higher-order chromatin organization, as well as the transcriptome. We observed a general loss of local chromatin interactions upon disruption of cohesin, but the topological domains remain intact. However, we found that depletion of CTCF not only reduced intradomain interactions but also increased interdomain interactions. Furthermore, distinct groups of genes become misregulated upon depletion of cohesin and CTCF. Taken together, these observations suggest that CTCF and cohesin contribute differentially to chromatin organization and gene regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Mitose , Família Multigênica , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transcriptoma , Coesinas
13.
BMC Med Genet ; 16: 10, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25927202

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in TSC1 and TSC2. Conventional DNA diagnostic screens identify a TSC1 or TSC2 mutation in 75 - 90% of individuals categorised with definite TSC. The remaining individuals either have a mutation that is undetectable using conventional methods, or possibly a mutation in another as yet unidentified gene. METHODS: Here we apply a targeted Next Generation Sequencing (NGS) approach to screen the complete TSC1 and TSC2 genomic loci in 7 individuals fulfilling the clinical diagnostic criteria for definite TSC in whom no TSC1 or TSC2 mutations were identified using conventional screening methods. RESULTS: We identified and confirmed pathogenic mutations in 3 individuals. In the remaining individuals we identified variants of uncertain clinical significance. The identified variants included mosaic changes, changes located deep in intronic sequences and changes affecting promoter regions that would not have been identified using exon-only based analyses. CONCLUSIONS: Targeted NGS of the TSC1 and TSC2 loci is a suitable method to increase the yield of mutations identified in the TSC patient population.


Assuntos
Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Proteínas Supressoras de Tumor/genética , Adolescente , Criança , Loci Gênicos/genética , Genômica , Humanos , Pessoa de Meia-Idade , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
14.
RNA Biol ; 12(1): 30-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826412

RESUMO

Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Humanos , Camundongos
15.
Dev Biol ; 382(1): 320-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707863

RESUMO

Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common 'low penetrant' variants in combination with rare or private 'high penetrant' variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development.


Assuntos
Variação Genética , Doença de Hirschsprung/genética , Modelos Biológicos , Animais , Estudos de Associação Genética , Predisposição Genética para Doença , Doença de Hirschsprung/patologia , Humanos
16.
Mod Pathol ; 27(10): 1321-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24633195

RESUMO

Uveal melanoma is a lethal cancer with a strong propensity to metastasize. Limited therapeutic options are available once the disease has disseminated. A strong predictor for metastasis is the loss of chromosome 3. Inactivating mutations in BAP1 encoding the BRCA1-associated protein 1 and located on chromosome 3p21.1, have been described in uveal melanoma and other types of cancer. In this study, we determined the prevalence of somatic BAP1 mutations and examined whether these mutations correlate with the functional expression of BAP1 in uveal melanoma tissue and with other clinical, histopathological and chromosomal parameters. We screened a cohort of 74 uveal melanomas for BAP1 mutations, using different deep sequencing methods. The frequency of BAP1 mutations in our study group was 47%. The expression of BAP1 protein was studied using immunohistochemistry. BAP1 staining was absent in 43% of the cases. BAP1 mutation status was strongly associated with BAP1 protein expression (P<0.001), loss of chromosome 3 (P<0.001), and other aggressive prognostic factors. Patients with a BAP1 mutation and absent BAP1 expression had an almost eightfold higher chance of developing metastases compared with those without these changes (P=0.002). We found a strong correlation between the immunohistochemical and sequencing data and therefore propose that, immunohistochemical screening for BAP1 should become routine in the histopathological work-up of uveal melanoma. Furthermore, our analysis indicates that loss of BAP1 may be particularly involved in the progression of uveal melanoma to an aggressive, metastatic phenotype.


Assuntos
Biomarcadores Tumorais/genética , Imuno-Histoquímica , Melanoma/genética , Mutação , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Uveais/mortalidade , Neoplasias Uveais/patologia
17.
Sci Immunol ; 8(85): eadg3917, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37418545

RESUMO

Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.


Assuntos
Cromatina , Regulação da Expressão Gênica , Humanos , Cromatina/genética , Fatores de Transcrição/genética , Regiões Promotoras Genéticas
18.
Genes (Basel) ; 14(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36980900

RESUMO

Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2's mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.


Assuntos
Neurônios , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Camundongos , Sítios de Ligação , DNA/química , DNA/metabolismo , Homozigoto , Neurônios/metabolismo , Neurônios/patologia , Deleção de Sequência , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo
19.
Genes (Basel) ; 14(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137048

RESUMO

Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating gene expression on a whole organism level, this technology enables scientists to get a detailed look at rare single cells or within their cell population of interest. The field is growing, and many new methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell, FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment requirements for each method. We evaluated the performances of these methods based on detected features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome detects more unique transcripts than any single cell method. While most methods are comparable in many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no equipment for automation is available or many cells are desired, then HIVE or 10X yield good results. In general, more recently developed methods perform better. This also leads to the conclusion that older methods should be phased out, and that the development of single cell RNAseq methods is still progressing considerably.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos
20.
BMC Nutr ; 8(1): 93, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038938

RESUMO

BACKGROUND: Natural enrichment of sn-2 palmitate content of infant formulae by using bovine milk fat is known to reduce formation of faecal fatty acid soaps and to improve stool consistency, but effects on gut microbiota composition are unknown. The purpose of this study was to test the influence of milk fat-based formula high in sn-2 palmitate on the infants' gut microbiota composition and to confirm the beneficial effects of the formula on formation of faecal fatty acid soaps and stool consistency. METHODS: Twenty-two healthy term, formula-fed infants were enrolled in a single-blinded randomized, crossover, placebo-controlled trial. After a 2-week run-in period, infants received either a 50% milk fat-based formula containing 39% sn-2 palmitate (MF) or a vegetable fat-based formula (VF) containing 10% sn-2 palmitate in a 2 × 2-week crossover design. Faecal microbiota composition was the primary outcome of the study. Other outcomes included faecal fatty acid soap excretion, calcium excretion, gut comfort parameters and faecal metabolites. RESULTS: Microbiota analysis showed that bifidobacteria dominated the gut microbiota of most infants. Neither alpha- nor beta-diversity was significantly influenced by the intervention. Also, abundance of metabolic pathways was independent of the intervention. The MF formula resulted in significantly lower faecal levels of palmitic acid soap (p = 0.0002) and total fatty acid soaps (p = 0.0001) than the VF formula. Additionally, calcium excretion and palmitic acid concentration were significantly (p = 0.0335) lower in stool samples after MF intervention. Furthermore, a significant physiological effect on softer stools was observed in the MF intervention compared to the VF intervention (p = 0.02). Of the 870 measured faecal metabolites, 190 were significantly different after MF and VF intervention (FDR corrected p < 0.05). Most of these were found at higher levels after MF intervention, potentially indicative of the complex structure of milk fat. Metabolites with more than twofold change between interventions were mostly lipid-derived and included several milk fat-specific fatty acids. CONCLUSIONS: Replacing part of the vegetable fat in infant formula with bovine milk fat with high sn-2 palmitate levels did not change the microbiota composition, although a reduction in faecal palmitate soaps, total fatty acid soaps and calcium excretion while improving stool consistency in the MF intervention was confirmed. In addition, 190 faecal metabolites were significantly different, many related to the fat source. TRIAL REGISTRATION: Netherlands Trial Registry Identifier: NL7815 19/06/2019.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA